This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Every singleton map is a constant function. (Contributed by Stefan O'Rear, 25-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mapsncnv.s | |- S = { X } |
|
| mapsncnv.b | |- B e. _V |
||
| mapsncnv.x | |- X e. _V |
||
| Assertion | mapsnconst | |- ( F e. ( B ^m S ) -> F = ( S X. { ( F ` X ) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mapsncnv.s | |- S = { X } |
|
| 2 | mapsncnv.b | |- B e. _V |
|
| 3 | mapsncnv.x | |- X e. _V |
|
| 4 | snex | |- { X } e. _V |
|
| 5 | 2 4 | elmap | |- ( F e. ( B ^m { X } ) <-> F : { X } --> B ) |
| 6 | 3 | fsn2 | |- ( F : { X } --> B <-> ( ( F ` X ) e. B /\ F = { <. X , ( F ` X ) >. } ) ) |
| 7 | 6 | simprbi | |- ( F : { X } --> B -> F = { <. X , ( F ` X ) >. } ) |
| 8 | 1 | xpeq1i | |- ( S X. { ( F ` X ) } ) = ( { X } X. { ( F ` X ) } ) |
| 9 | fvex | |- ( F ` X ) e. _V |
|
| 10 | 3 9 | xpsn | |- ( { X } X. { ( F ` X ) } ) = { <. X , ( F ` X ) >. } |
| 11 | 8 10 | eqtr2i | |- { <. X , ( F ` X ) >. } = ( S X. { ( F ` X ) } ) |
| 12 | 7 11 | eqtrdi | |- ( F : { X } --> B -> F = ( S X. { ( F ` X ) } ) ) |
| 13 | 5 12 | sylbi | |- ( F e. ( B ^m { X } ) -> F = ( S X. { ( F ` X ) } ) ) |
| 14 | 1 | oveq2i | |- ( B ^m S ) = ( B ^m { X } ) |
| 15 | 13 14 | eleq2s | |- ( F e. ( B ^m S ) -> F = ( S X. { ( F ` X ) } ) ) |