This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The components of the identity matrix (as operation in maps-to notation). (Contributed by AV, 22-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mamumat1cl.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| mamumat1cl.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| mamumat1cl.o | ⊢ 1 = ( 1r ‘ 𝑅 ) | ||
| mamumat1cl.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| mamumat1cl.i | ⊢ 𝐼 = ( 𝑖 ∈ 𝑀 , 𝑗 ∈ 𝑀 ↦ if ( 𝑖 = 𝑗 , 1 , 0 ) ) | ||
| mamumat1cl.m | ⊢ ( 𝜑 → 𝑀 ∈ Fin ) | ||
| Assertion | mat1comp | ⊢ ( ( 𝐴 ∈ 𝑀 ∧ 𝐽 ∈ 𝑀 ) → ( 𝐴 𝐼 𝐽 ) = if ( 𝐴 = 𝐽 , 1 , 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mamumat1cl.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | mamumat1cl.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 3 | mamumat1cl.o | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
| 4 | mamumat1cl.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 5 | mamumat1cl.i | ⊢ 𝐼 = ( 𝑖 ∈ 𝑀 , 𝑗 ∈ 𝑀 ↦ if ( 𝑖 = 𝑗 , 1 , 0 ) ) | |
| 6 | mamumat1cl.m | ⊢ ( 𝜑 → 𝑀 ∈ Fin ) | |
| 7 | eqeq1 | ⊢ ( 𝑖 = 𝐴 → ( 𝑖 = 𝑗 ↔ 𝐴 = 𝑗 ) ) | |
| 8 | 7 | ifbid | ⊢ ( 𝑖 = 𝐴 → if ( 𝑖 = 𝑗 , 1 , 0 ) = if ( 𝐴 = 𝑗 , 1 , 0 ) ) |
| 9 | eqeq2 | ⊢ ( 𝑗 = 𝐽 → ( 𝐴 = 𝑗 ↔ 𝐴 = 𝐽 ) ) | |
| 10 | 9 | ifbid | ⊢ ( 𝑗 = 𝐽 → if ( 𝐴 = 𝑗 , 1 , 0 ) = if ( 𝐴 = 𝐽 , 1 , 0 ) ) |
| 11 | 3 | fvexi | ⊢ 1 ∈ V |
| 12 | 4 | fvexi | ⊢ 0 ∈ V |
| 13 | 11 12 | ifex | ⊢ if ( 𝐴 = 𝐽 , 1 , 0 ) ∈ V |
| 14 | 8 10 5 13 | ovmpo | ⊢ ( ( 𝐴 ∈ 𝑀 ∧ 𝐽 ∈ 𝑀 ) → ( 𝐴 𝐼 𝐽 ) = if ( 𝐴 = 𝐽 , 1 , 0 ) ) |