This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Matrix multiplication distributes over addition on the right. (Contributed by Stefan O'Rear, 5-Sep-2015) (Proof shortened by AV, 23-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mamucl.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| mamucl.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| mamudi.f | ⊢ 𝐹 = ( 𝑅 maMul 〈 𝑀 , 𝑁 , 𝑂 〉 ) | ||
| mamudi.m | ⊢ ( 𝜑 → 𝑀 ∈ Fin ) | ||
| mamudi.n | ⊢ ( 𝜑 → 𝑁 ∈ Fin ) | ||
| mamudi.o | ⊢ ( 𝜑 → 𝑂 ∈ Fin ) | ||
| mamudir.p | ⊢ + = ( +g ‘ 𝑅 ) | ||
| mamudir.x | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝐵 ↑m ( 𝑀 × 𝑁 ) ) ) | ||
| mamudir.y | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝐵 ↑m ( 𝑁 × 𝑂 ) ) ) | ||
| mamudir.z | ⊢ ( 𝜑 → 𝑍 ∈ ( 𝐵 ↑m ( 𝑁 × 𝑂 ) ) ) | ||
| Assertion | mamudir | ⊢ ( 𝜑 → ( 𝑋 𝐹 ( 𝑌 ∘f + 𝑍 ) ) = ( ( 𝑋 𝐹 𝑌 ) ∘f + ( 𝑋 𝐹 𝑍 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mamucl.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | mamucl.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 3 | mamudi.f | ⊢ 𝐹 = ( 𝑅 maMul 〈 𝑀 , 𝑁 , 𝑂 〉 ) | |
| 4 | mamudi.m | ⊢ ( 𝜑 → 𝑀 ∈ Fin ) | |
| 5 | mamudi.n | ⊢ ( 𝜑 → 𝑁 ∈ Fin ) | |
| 6 | mamudi.o | ⊢ ( 𝜑 → 𝑂 ∈ Fin ) | |
| 7 | mamudir.p | ⊢ + = ( +g ‘ 𝑅 ) | |
| 8 | mamudir.x | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝐵 ↑m ( 𝑀 × 𝑁 ) ) ) | |
| 9 | mamudir.y | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝐵 ↑m ( 𝑁 × 𝑂 ) ) ) | |
| 10 | mamudir.z | ⊢ ( 𝜑 → 𝑍 ∈ ( 𝐵 ↑m ( 𝑁 × 𝑂 ) ) ) | |
| 11 | ringcmn | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ CMnd ) | |
| 12 | 2 11 | syl | ⊢ ( 𝜑 → 𝑅 ∈ CMnd ) |
| 13 | 12 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → 𝑅 ∈ CMnd ) |
| 14 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → 𝑁 ∈ Fin ) |
| 15 | 2 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → 𝑅 ∈ Ring ) |
| 16 | elmapi | ⊢ ( 𝑋 ∈ ( 𝐵 ↑m ( 𝑀 × 𝑁 ) ) → 𝑋 : ( 𝑀 × 𝑁 ) ⟶ 𝐵 ) | |
| 17 | 8 16 | syl | ⊢ ( 𝜑 → 𝑋 : ( 𝑀 × 𝑁 ) ⟶ 𝐵 ) |
| 18 | 17 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → 𝑋 : ( 𝑀 × 𝑁 ) ⟶ 𝐵 ) |
| 19 | simplrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → 𝑖 ∈ 𝑀 ) | |
| 20 | simpr | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → 𝑗 ∈ 𝑁 ) | |
| 21 | 18 19 20 | fovcdmd | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → ( 𝑖 𝑋 𝑗 ) ∈ 𝐵 ) |
| 22 | elmapi | ⊢ ( 𝑌 ∈ ( 𝐵 ↑m ( 𝑁 × 𝑂 ) ) → 𝑌 : ( 𝑁 × 𝑂 ) ⟶ 𝐵 ) | |
| 23 | 9 22 | syl | ⊢ ( 𝜑 → 𝑌 : ( 𝑁 × 𝑂 ) ⟶ 𝐵 ) |
| 24 | 23 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → 𝑌 : ( 𝑁 × 𝑂 ) ⟶ 𝐵 ) |
| 25 | simplrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → 𝑘 ∈ 𝑂 ) | |
| 26 | 24 20 25 | fovcdmd | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → ( 𝑗 𝑌 𝑘 ) ∈ 𝐵 ) |
| 27 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 28 | 1 27 | ringcl | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑖 𝑋 𝑗 ) ∈ 𝐵 ∧ ( 𝑗 𝑌 𝑘 ) ∈ 𝐵 ) → ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑌 𝑘 ) ) ∈ 𝐵 ) |
| 29 | 15 21 26 28 | syl3anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑌 𝑘 ) ) ∈ 𝐵 ) |
| 30 | elmapi | ⊢ ( 𝑍 ∈ ( 𝐵 ↑m ( 𝑁 × 𝑂 ) ) → 𝑍 : ( 𝑁 × 𝑂 ) ⟶ 𝐵 ) | |
| 31 | 10 30 | syl | ⊢ ( 𝜑 → 𝑍 : ( 𝑁 × 𝑂 ) ⟶ 𝐵 ) |
| 32 | 31 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → 𝑍 : ( 𝑁 × 𝑂 ) ⟶ 𝐵 ) |
| 33 | 32 20 25 | fovcdmd | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → ( 𝑗 𝑍 𝑘 ) ∈ 𝐵 ) |
| 34 | 1 27 | ringcl | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑖 𝑋 𝑗 ) ∈ 𝐵 ∧ ( 𝑗 𝑍 𝑘 ) ∈ 𝐵 ) → ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ∈ 𝐵 ) |
| 35 | 15 21 33 34 | syl3anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ∈ 𝐵 ) |
| 36 | eqid | ⊢ ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑌 𝑘 ) ) ) = ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑌 𝑘 ) ) ) | |
| 37 | eqid | ⊢ ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) = ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) | |
| 38 | 1 7 13 14 29 35 36 37 | gsummptfidmadd2 | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 𝑅 Σg ( ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑌 𝑘 ) ) ) ∘f + ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) ) ) = ( ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑌 𝑘 ) ) ) ) + ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) ) ) ) |
| 39 | 24 | ffnd | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → 𝑌 Fn ( 𝑁 × 𝑂 ) ) |
| 40 | 32 | ffnd | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → 𝑍 Fn ( 𝑁 × 𝑂 ) ) |
| 41 | xpfi | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑂 ∈ Fin ) → ( 𝑁 × 𝑂 ) ∈ Fin ) | |
| 42 | 5 6 41 | syl2anc | ⊢ ( 𝜑 → ( 𝑁 × 𝑂 ) ∈ Fin ) |
| 43 | 42 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → ( 𝑁 × 𝑂 ) ∈ Fin ) |
| 44 | opelxpi | ⊢ ( ( 𝑗 ∈ 𝑁 ∧ 𝑘 ∈ 𝑂 ) → 〈 𝑗 , 𝑘 〉 ∈ ( 𝑁 × 𝑂 ) ) | |
| 45 | 44 | ancoms | ⊢ ( ( 𝑘 ∈ 𝑂 ∧ 𝑗 ∈ 𝑁 ) → 〈 𝑗 , 𝑘 〉 ∈ ( 𝑁 × 𝑂 ) ) |
| 46 | 45 | adantll | ⊢ ( ( ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ∧ 𝑗 ∈ 𝑁 ) → 〈 𝑗 , 𝑘 〉 ∈ ( 𝑁 × 𝑂 ) ) |
| 47 | 46 | adantll | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → 〈 𝑗 , 𝑘 〉 ∈ ( 𝑁 × 𝑂 ) ) |
| 48 | fnfvof | ⊢ ( ( ( 𝑌 Fn ( 𝑁 × 𝑂 ) ∧ 𝑍 Fn ( 𝑁 × 𝑂 ) ) ∧ ( ( 𝑁 × 𝑂 ) ∈ Fin ∧ 〈 𝑗 , 𝑘 〉 ∈ ( 𝑁 × 𝑂 ) ) ) → ( ( 𝑌 ∘f + 𝑍 ) ‘ 〈 𝑗 , 𝑘 〉 ) = ( ( 𝑌 ‘ 〈 𝑗 , 𝑘 〉 ) + ( 𝑍 ‘ 〈 𝑗 , 𝑘 〉 ) ) ) | |
| 49 | 39 40 43 47 48 | syl22anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → ( ( 𝑌 ∘f + 𝑍 ) ‘ 〈 𝑗 , 𝑘 〉 ) = ( ( 𝑌 ‘ 〈 𝑗 , 𝑘 〉 ) + ( 𝑍 ‘ 〈 𝑗 , 𝑘 〉 ) ) ) |
| 50 | df-ov | ⊢ ( 𝑗 ( 𝑌 ∘f + 𝑍 ) 𝑘 ) = ( ( 𝑌 ∘f + 𝑍 ) ‘ 〈 𝑗 , 𝑘 〉 ) | |
| 51 | df-ov | ⊢ ( 𝑗 𝑌 𝑘 ) = ( 𝑌 ‘ 〈 𝑗 , 𝑘 〉 ) | |
| 52 | df-ov | ⊢ ( 𝑗 𝑍 𝑘 ) = ( 𝑍 ‘ 〈 𝑗 , 𝑘 〉 ) | |
| 53 | 51 52 | oveq12i | ⊢ ( ( 𝑗 𝑌 𝑘 ) + ( 𝑗 𝑍 𝑘 ) ) = ( ( 𝑌 ‘ 〈 𝑗 , 𝑘 〉 ) + ( 𝑍 ‘ 〈 𝑗 , 𝑘 〉 ) ) |
| 54 | 49 50 53 | 3eqtr4g | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → ( 𝑗 ( 𝑌 ∘f + 𝑍 ) 𝑘 ) = ( ( 𝑗 𝑌 𝑘 ) + ( 𝑗 𝑍 𝑘 ) ) ) |
| 55 | 54 | oveq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 ( 𝑌 ∘f + 𝑍 ) 𝑘 ) ) = ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑗 𝑌 𝑘 ) + ( 𝑗 𝑍 𝑘 ) ) ) ) |
| 56 | 1 7 27 | ringdi | ⊢ ( ( 𝑅 ∈ Ring ∧ ( ( 𝑖 𝑋 𝑗 ) ∈ 𝐵 ∧ ( 𝑗 𝑌 𝑘 ) ∈ 𝐵 ∧ ( 𝑗 𝑍 𝑘 ) ∈ 𝐵 ) ) → ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑗 𝑌 𝑘 ) + ( 𝑗 𝑍 𝑘 ) ) ) = ( ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑌 𝑘 ) ) + ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) ) |
| 57 | 15 21 26 33 56 | syl13anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑗 𝑌 𝑘 ) + ( 𝑗 𝑍 𝑘 ) ) ) = ( ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑌 𝑘 ) ) + ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) ) |
| 58 | 55 57 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 ( 𝑌 ∘f + 𝑍 ) 𝑘 ) ) = ( ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑌 𝑘 ) ) + ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) ) |
| 59 | 58 | mpteq2dva | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 ( 𝑌 ∘f + 𝑍 ) 𝑘 ) ) ) = ( 𝑗 ∈ 𝑁 ↦ ( ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑌 𝑘 ) ) + ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) ) ) |
| 60 | eqidd | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑌 𝑘 ) ) ) = ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑌 𝑘 ) ) ) ) | |
| 61 | eqidd | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) = ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) ) | |
| 62 | 14 29 35 60 61 | offval2 | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑌 𝑘 ) ) ) ∘f + ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) ) = ( 𝑗 ∈ 𝑁 ↦ ( ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑌 𝑘 ) ) + ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) ) ) |
| 63 | 59 62 | eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 ( 𝑌 ∘f + 𝑍 ) 𝑘 ) ) ) = ( ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑌 𝑘 ) ) ) ∘f + ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) ) ) |
| 64 | 63 | oveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 ( 𝑌 ∘f + 𝑍 ) 𝑘 ) ) ) ) = ( 𝑅 Σg ( ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑌 𝑘 ) ) ) ∘f + ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) ) ) ) |
| 65 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → 𝑅 ∈ Ring ) |
| 66 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → 𝑀 ∈ Fin ) |
| 67 | 6 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → 𝑂 ∈ Fin ) |
| 68 | 8 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → 𝑋 ∈ ( 𝐵 ↑m ( 𝑀 × 𝑁 ) ) ) |
| 69 | 9 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → 𝑌 ∈ ( 𝐵 ↑m ( 𝑁 × 𝑂 ) ) ) |
| 70 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → 𝑖 ∈ 𝑀 ) | |
| 71 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → 𝑘 ∈ 𝑂 ) | |
| 72 | 3 1 27 65 66 14 67 68 69 70 71 | mamufv | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 𝑖 ( 𝑋 𝐹 𝑌 ) 𝑘 ) = ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑌 𝑘 ) ) ) ) ) |
| 73 | 10 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → 𝑍 ∈ ( 𝐵 ↑m ( 𝑁 × 𝑂 ) ) ) |
| 74 | 3 1 27 65 66 14 67 68 73 70 71 | mamufv | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 𝑖 ( 𝑋 𝐹 𝑍 ) 𝑘 ) = ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) ) ) |
| 75 | 72 74 | oveq12d | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( ( 𝑖 ( 𝑋 𝐹 𝑌 ) 𝑘 ) + ( 𝑖 ( 𝑋 𝐹 𝑍 ) 𝑘 ) ) = ( ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑌 𝑘 ) ) ) ) + ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) ) ) ) |
| 76 | 38 64 75 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 ( 𝑌 ∘f + 𝑍 ) 𝑘 ) ) ) ) = ( ( 𝑖 ( 𝑋 𝐹 𝑌 ) 𝑘 ) + ( 𝑖 ( 𝑋 𝐹 𝑍 ) 𝑘 ) ) ) |
| 77 | ringmnd | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Mnd ) | |
| 78 | 2 77 | syl | ⊢ ( 𝜑 → 𝑅 ∈ Mnd ) |
| 79 | 1 7 | mndvcl | ⊢ ( ( 𝑅 ∈ Mnd ∧ 𝑌 ∈ ( 𝐵 ↑m ( 𝑁 × 𝑂 ) ) ∧ 𝑍 ∈ ( 𝐵 ↑m ( 𝑁 × 𝑂 ) ) ) → ( 𝑌 ∘f + 𝑍 ) ∈ ( 𝐵 ↑m ( 𝑁 × 𝑂 ) ) ) |
| 80 | 78 9 10 79 | syl3anc | ⊢ ( 𝜑 → ( 𝑌 ∘f + 𝑍 ) ∈ ( 𝐵 ↑m ( 𝑁 × 𝑂 ) ) ) |
| 81 | 80 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 𝑌 ∘f + 𝑍 ) ∈ ( 𝐵 ↑m ( 𝑁 × 𝑂 ) ) ) |
| 82 | 3 1 27 65 66 14 67 68 81 70 71 | mamufv | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 𝑖 ( 𝑋 𝐹 ( 𝑌 ∘f + 𝑍 ) ) 𝑘 ) = ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 ( 𝑌 ∘f + 𝑍 ) 𝑘 ) ) ) ) ) |
| 83 | 1 2 3 4 5 6 8 9 | mamucl | ⊢ ( 𝜑 → ( 𝑋 𝐹 𝑌 ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑂 ) ) ) |
| 84 | elmapi | ⊢ ( ( 𝑋 𝐹 𝑌 ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑂 ) ) → ( 𝑋 𝐹 𝑌 ) : ( 𝑀 × 𝑂 ) ⟶ 𝐵 ) | |
| 85 | ffn | ⊢ ( ( 𝑋 𝐹 𝑌 ) : ( 𝑀 × 𝑂 ) ⟶ 𝐵 → ( 𝑋 𝐹 𝑌 ) Fn ( 𝑀 × 𝑂 ) ) | |
| 86 | 83 84 85 | 3syl | ⊢ ( 𝜑 → ( 𝑋 𝐹 𝑌 ) Fn ( 𝑀 × 𝑂 ) ) |
| 87 | 86 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 𝑋 𝐹 𝑌 ) Fn ( 𝑀 × 𝑂 ) ) |
| 88 | 1 2 3 4 5 6 8 10 | mamucl | ⊢ ( 𝜑 → ( 𝑋 𝐹 𝑍 ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑂 ) ) ) |
| 89 | elmapi | ⊢ ( ( 𝑋 𝐹 𝑍 ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑂 ) ) → ( 𝑋 𝐹 𝑍 ) : ( 𝑀 × 𝑂 ) ⟶ 𝐵 ) | |
| 90 | ffn | ⊢ ( ( 𝑋 𝐹 𝑍 ) : ( 𝑀 × 𝑂 ) ⟶ 𝐵 → ( 𝑋 𝐹 𝑍 ) Fn ( 𝑀 × 𝑂 ) ) | |
| 91 | 88 89 90 | 3syl | ⊢ ( 𝜑 → ( 𝑋 𝐹 𝑍 ) Fn ( 𝑀 × 𝑂 ) ) |
| 92 | 91 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 𝑋 𝐹 𝑍 ) Fn ( 𝑀 × 𝑂 ) ) |
| 93 | xpfi | ⊢ ( ( 𝑀 ∈ Fin ∧ 𝑂 ∈ Fin ) → ( 𝑀 × 𝑂 ) ∈ Fin ) | |
| 94 | 4 6 93 | syl2anc | ⊢ ( 𝜑 → ( 𝑀 × 𝑂 ) ∈ Fin ) |
| 95 | 94 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 𝑀 × 𝑂 ) ∈ Fin ) |
| 96 | opelxpi | ⊢ ( ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) → 〈 𝑖 , 𝑘 〉 ∈ ( 𝑀 × 𝑂 ) ) | |
| 97 | 96 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → 〈 𝑖 , 𝑘 〉 ∈ ( 𝑀 × 𝑂 ) ) |
| 98 | fnfvof | ⊢ ( ( ( ( 𝑋 𝐹 𝑌 ) Fn ( 𝑀 × 𝑂 ) ∧ ( 𝑋 𝐹 𝑍 ) Fn ( 𝑀 × 𝑂 ) ) ∧ ( ( 𝑀 × 𝑂 ) ∈ Fin ∧ 〈 𝑖 , 𝑘 〉 ∈ ( 𝑀 × 𝑂 ) ) ) → ( ( ( 𝑋 𝐹 𝑌 ) ∘f + ( 𝑋 𝐹 𝑍 ) ) ‘ 〈 𝑖 , 𝑘 〉 ) = ( ( ( 𝑋 𝐹 𝑌 ) ‘ 〈 𝑖 , 𝑘 〉 ) + ( ( 𝑋 𝐹 𝑍 ) ‘ 〈 𝑖 , 𝑘 〉 ) ) ) | |
| 99 | 87 92 95 97 98 | syl22anc | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( ( ( 𝑋 𝐹 𝑌 ) ∘f + ( 𝑋 𝐹 𝑍 ) ) ‘ 〈 𝑖 , 𝑘 〉 ) = ( ( ( 𝑋 𝐹 𝑌 ) ‘ 〈 𝑖 , 𝑘 〉 ) + ( ( 𝑋 𝐹 𝑍 ) ‘ 〈 𝑖 , 𝑘 〉 ) ) ) |
| 100 | df-ov | ⊢ ( 𝑖 ( ( 𝑋 𝐹 𝑌 ) ∘f + ( 𝑋 𝐹 𝑍 ) ) 𝑘 ) = ( ( ( 𝑋 𝐹 𝑌 ) ∘f + ( 𝑋 𝐹 𝑍 ) ) ‘ 〈 𝑖 , 𝑘 〉 ) | |
| 101 | df-ov | ⊢ ( 𝑖 ( 𝑋 𝐹 𝑌 ) 𝑘 ) = ( ( 𝑋 𝐹 𝑌 ) ‘ 〈 𝑖 , 𝑘 〉 ) | |
| 102 | df-ov | ⊢ ( 𝑖 ( 𝑋 𝐹 𝑍 ) 𝑘 ) = ( ( 𝑋 𝐹 𝑍 ) ‘ 〈 𝑖 , 𝑘 〉 ) | |
| 103 | 101 102 | oveq12i | ⊢ ( ( 𝑖 ( 𝑋 𝐹 𝑌 ) 𝑘 ) + ( 𝑖 ( 𝑋 𝐹 𝑍 ) 𝑘 ) ) = ( ( ( 𝑋 𝐹 𝑌 ) ‘ 〈 𝑖 , 𝑘 〉 ) + ( ( 𝑋 𝐹 𝑍 ) ‘ 〈 𝑖 , 𝑘 〉 ) ) |
| 104 | 99 100 103 | 3eqtr4g | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 𝑖 ( ( 𝑋 𝐹 𝑌 ) ∘f + ( 𝑋 𝐹 𝑍 ) ) 𝑘 ) = ( ( 𝑖 ( 𝑋 𝐹 𝑌 ) 𝑘 ) + ( 𝑖 ( 𝑋 𝐹 𝑍 ) 𝑘 ) ) ) |
| 105 | 76 82 104 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 𝑖 ( 𝑋 𝐹 ( 𝑌 ∘f + 𝑍 ) ) 𝑘 ) = ( 𝑖 ( ( 𝑋 𝐹 𝑌 ) ∘f + ( 𝑋 𝐹 𝑍 ) ) 𝑘 ) ) |
| 106 | 105 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑖 ∈ 𝑀 ∀ 𝑘 ∈ 𝑂 ( 𝑖 ( 𝑋 𝐹 ( 𝑌 ∘f + 𝑍 ) ) 𝑘 ) = ( 𝑖 ( ( 𝑋 𝐹 𝑌 ) ∘f + ( 𝑋 𝐹 𝑍 ) ) 𝑘 ) ) |
| 107 | 1 2 3 4 5 6 8 80 | mamucl | ⊢ ( 𝜑 → ( 𝑋 𝐹 ( 𝑌 ∘f + 𝑍 ) ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑂 ) ) ) |
| 108 | elmapi | ⊢ ( ( 𝑋 𝐹 ( 𝑌 ∘f + 𝑍 ) ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑂 ) ) → ( 𝑋 𝐹 ( 𝑌 ∘f + 𝑍 ) ) : ( 𝑀 × 𝑂 ) ⟶ 𝐵 ) | |
| 109 | ffn | ⊢ ( ( 𝑋 𝐹 ( 𝑌 ∘f + 𝑍 ) ) : ( 𝑀 × 𝑂 ) ⟶ 𝐵 → ( 𝑋 𝐹 ( 𝑌 ∘f + 𝑍 ) ) Fn ( 𝑀 × 𝑂 ) ) | |
| 110 | 107 108 109 | 3syl | ⊢ ( 𝜑 → ( 𝑋 𝐹 ( 𝑌 ∘f + 𝑍 ) ) Fn ( 𝑀 × 𝑂 ) ) |
| 111 | 1 7 | mndvcl | ⊢ ( ( 𝑅 ∈ Mnd ∧ ( 𝑋 𝐹 𝑌 ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑂 ) ) ∧ ( 𝑋 𝐹 𝑍 ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑂 ) ) ) → ( ( 𝑋 𝐹 𝑌 ) ∘f + ( 𝑋 𝐹 𝑍 ) ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑂 ) ) ) |
| 112 | 78 83 88 111 | syl3anc | ⊢ ( 𝜑 → ( ( 𝑋 𝐹 𝑌 ) ∘f + ( 𝑋 𝐹 𝑍 ) ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑂 ) ) ) |
| 113 | elmapi | ⊢ ( ( ( 𝑋 𝐹 𝑌 ) ∘f + ( 𝑋 𝐹 𝑍 ) ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑂 ) ) → ( ( 𝑋 𝐹 𝑌 ) ∘f + ( 𝑋 𝐹 𝑍 ) ) : ( 𝑀 × 𝑂 ) ⟶ 𝐵 ) | |
| 114 | ffn | ⊢ ( ( ( 𝑋 𝐹 𝑌 ) ∘f + ( 𝑋 𝐹 𝑍 ) ) : ( 𝑀 × 𝑂 ) ⟶ 𝐵 → ( ( 𝑋 𝐹 𝑌 ) ∘f + ( 𝑋 𝐹 𝑍 ) ) Fn ( 𝑀 × 𝑂 ) ) | |
| 115 | 112 113 114 | 3syl | ⊢ ( 𝜑 → ( ( 𝑋 𝐹 𝑌 ) ∘f + ( 𝑋 𝐹 𝑍 ) ) Fn ( 𝑀 × 𝑂 ) ) |
| 116 | eqfnov2 | ⊢ ( ( ( 𝑋 𝐹 ( 𝑌 ∘f + 𝑍 ) ) Fn ( 𝑀 × 𝑂 ) ∧ ( ( 𝑋 𝐹 𝑌 ) ∘f + ( 𝑋 𝐹 𝑍 ) ) Fn ( 𝑀 × 𝑂 ) ) → ( ( 𝑋 𝐹 ( 𝑌 ∘f + 𝑍 ) ) = ( ( 𝑋 𝐹 𝑌 ) ∘f + ( 𝑋 𝐹 𝑍 ) ) ↔ ∀ 𝑖 ∈ 𝑀 ∀ 𝑘 ∈ 𝑂 ( 𝑖 ( 𝑋 𝐹 ( 𝑌 ∘f + 𝑍 ) ) 𝑘 ) = ( 𝑖 ( ( 𝑋 𝐹 𝑌 ) ∘f + ( 𝑋 𝐹 𝑍 ) ) 𝑘 ) ) ) | |
| 117 | 110 115 116 | syl2anc | ⊢ ( 𝜑 → ( ( 𝑋 𝐹 ( 𝑌 ∘f + 𝑍 ) ) = ( ( 𝑋 𝐹 𝑌 ) ∘f + ( 𝑋 𝐹 𝑍 ) ) ↔ ∀ 𝑖 ∈ 𝑀 ∀ 𝑘 ∈ 𝑂 ( 𝑖 ( 𝑋 𝐹 ( 𝑌 ∘f + 𝑍 ) ) 𝑘 ) = ( 𝑖 ( ( 𝑋 𝐹 𝑌 ) ∘f + ( 𝑋 𝐹 𝑍 ) ) 𝑘 ) ) ) |
| 118 | 106 117 | mpbird | ⊢ ( 𝜑 → ( 𝑋 𝐹 ( 𝑌 ∘f + 𝑍 ) ) = ( ( 𝑋 𝐹 𝑌 ) ∘f + ( 𝑋 𝐹 𝑍 ) ) ) |