This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Matrix multiplication is associative, see also statement in Lang p. 505. (Contributed by Stefan O'Rear, 5-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mamucl.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| mamucl.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| mamuass.m | ⊢ ( 𝜑 → 𝑀 ∈ Fin ) | ||
| mamuass.n | ⊢ ( 𝜑 → 𝑁 ∈ Fin ) | ||
| mamuass.o | ⊢ ( 𝜑 → 𝑂 ∈ Fin ) | ||
| mamuass.p | ⊢ ( 𝜑 → 𝑃 ∈ Fin ) | ||
| mamuass.x | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝐵 ↑m ( 𝑀 × 𝑁 ) ) ) | ||
| mamuass.y | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝐵 ↑m ( 𝑁 × 𝑂 ) ) ) | ||
| mamuass.z | ⊢ ( 𝜑 → 𝑍 ∈ ( 𝐵 ↑m ( 𝑂 × 𝑃 ) ) ) | ||
| mamuass.f | ⊢ 𝐹 = ( 𝑅 maMul 〈 𝑀 , 𝑁 , 𝑂 〉 ) | ||
| mamuass.g | ⊢ 𝐺 = ( 𝑅 maMul 〈 𝑀 , 𝑂 , 𝑃 〉 ) | ||
| mamuass.h | ⊢ 𝐻 = ( 𝑅 maMul 〈 𝑀 , 𝑁 , 𝑃 〉 ) | ||
| mamuass.i | ⊢ 𝐼 = ( 𝑅 maMul 〈 𝑁 , 𝑂 , 𝑃 〉 ) | ||
| Assertion | mamuass | ⊢ ( 𝜑 → ( ( 𝑋 𝐹 𝑌 ) 𝐺 𝑍 ) = ( 𝑋 𝐻 ( 𝑌 𝐼 𝑍 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mamucl.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | mamucl.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 3 | mamuass.m | ⊢ ( 𝜑 → 𝑀 ∈ Fin ) | |
| 4 | mamuass.n | ⊢ ( 𝜑 → 𝑁 ∈ Fin ) | |
| 5 | mamuass.o | ⊢ ( 𝜑 → 𝑂 ∈ Fin ) | |
| 6 | mamuass.p | ⊢ ( 𝜑 → 𝑃 ∈ Fin ) | |
| 7 | mamuass.x | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝐵 ↑m ( 𝑀 × 𝑁 ) ) ) | |
| 8 | mamuass.y | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝐵 ↑m ( 𝑁 × 𝑂 ) ) ) | |
| 9 | mamuass.z | ⊢ ( 𝜑 → 𝑍 ∈ ( 𝐵 ↑m ( 𝑂 × 𝑃 ) ) ) | |
| 10 | mamuass.f | ⊢ 𝐹 = ( 𝑅 maMul 〈 𝑀 , 𝑁 , 𝑂 〉 ) | |
| 11 | mamuass.g | ⊢ 𝐺 = ( 𝑅 maMul 〈 𝑀 , 𝑂 , 𝑃 〉 ) | |
| 12 | mamuass.h | ⊢ 𝐻 = ( 𝑅 maMul 〈 𝑀 , 𝑁 , 𝑃 〉 ) | |
| 13 | mamuass.i | ⊢ 𝐼 = ( 𝑅 maMul 〈 𝑁 , 𝑂 , 𝑃 〉 ) | |
| 14 | 2 | ringcmnd | ⊢ ( 𝜑 → 𝑅 ∈ CMnd ) |
| 15 | 14 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃 ) ) → 𝑅 ∈ CMnd ) |
| 16 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃 ) ) → 𝑂 ∈ Fin ) |
| 17 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃 ) ) → 𝑁 ∈ Fin ) |
| 18 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 19 | 2 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃 ) ) ∧ ( 𝑗 ∈ 𝑂 ∧ 𝑙 ∈ 𝑁 ) ) → 𝑅 ∈ Ring ) |
| 20 | elmapi | ⊢ ( 𝑋 ∈ ( 𝐵 ↑m ( 𝑀 × 𝑁 ) ) → 𝑋 : ( 𝑀 × 𝑁 ) ⟶ 𝐵 ) | |
| 21 | 7 20 | syl | ⊢ ( 𝜑 → 𝑋 : ( 𝑀 × 𝑁 ) ⟶ 𝐵 ) |
| 22 | 21 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃 ) ) ∧ 𝑙 ∈ 𝑁 ) → 𝑋 : ( 𝑀 × 𝑁 ) ⟶ 𝐵 ) |
| 23 | simplrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃 ) ) ∧ 𝑙 ∈ 𝑁 ) → 𝑖 ∈ 𝑀 ) | |
| 24 | simpr | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃 ) ) ∧ 𝑙 ∈ 𝑁 ) → 𝑙 ∈ 𝑁 ) | |
| 25 | 22 23 24 | fovcdmd | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃 ) ) ∧ 𝑙 ∈ 𝑁 ) → ( 𝑖 𝑋 𝑙 ) ∈ 𝐵 ) |
| 26 | 25 | adantrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃 ) ) ∧ ( 𝑗 ∈ 𝑂 ∧ 𝑙 ∈ 𝑁 ) ) → ( 𝑖 𝑋 𝑙 ) ∈ 𝐵 ) |
| 27 | elmapi | ⊢ ( 𝑌 ∈ ( 𝐵 ↑m ( 𝑁 × 𝑂 ) ) → 𝑌 : ( 𝑁 × 𝑂 ) ⟶ 𝐵 ) | |
| 28 | 8 27 | syl | ⊢ ( 𝜑 → 𝑌 : ( 𝑁 × 𝑂 ) ⟶ 𝐵 ) |
| 29 | 28 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃 ) ) ∧ ( 𝑗 ∈ 𝑂 ∧ 𝑙 ∈ 𝑁 ) ) → 𝑌 : ( 𝑁 × 𝑂 ) ⟶ 𝐵 ) |
| 30 | simprr | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃 ) ) ∧ ( 𝑗 ∈ 𝑂 ∧ 𝑙 ∈ 𝑁 ) ) → 𝑙 ∈ 𝑁 ) | |
| 31 | simprl | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃 ) ) ∧ ( 𝑗 ∈ 𝑂 ∧ 𝑙 ∈ 𝑁 ) ) → 𝑗 ∈ 𝑂 ) | |
| 32 | 29 30 31 | fovcdmd | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃 ) ) ∧ ( 𝑗 ∈ 𝑂 ∧ 𝑙 ∈ 𝑁 ) ) → ( 𝑙 𝑌 𝑗 ) ∈ 𝐵 ) |
| 33 | elmapi | ⊢ ( 𝑍 ∈ ( 𝐵 ↑m ( 𝑂 × 𝑃 ) ) → 𝑍 : ( 𝑂 × 𝑃 ) ⟶ 𝐵 ) | |
| 34 | 9 33 | syl | ⊢ ( 𝜑 → 𝑍 : ( 𝑂 × 𝑃 ) ⟶ 𝐵 ) |
| 35 | 34 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃 ) ) ∧ 𝑗 ∈ 𝑂 ) → 𝑍 : ( 𝑂 × 𝑃 ) ⟶ 𝐵 ) |
| 36 | simpr | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃 ) ) ∧ 𝑗 ∈ 𝑂 ) → 𝑗 ∈ 𝑂 ) | |
| 37 | simplrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃 ) ) ∧ 𝑗 ∈ 𝑂 ) → 𝑘 ∈ 𝑃 ) | |
| 38 | 35 36 37 | fovcdmd | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃 ) ) ∧ 𝑗 ∈ 𝑂 ) → ( 𝑗 𝑍 𝑘 ) ∈ 𝐵 ) |
| 39 | 38 | adantrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃 ) ) ∧ ( 𝑗 ∈ 𝑂 ∧ 𝑙 ∈ 𝑁 ) ) → ( 𝑗 𝑍 𝑘 ) ∈ 𝐵 ) |
| 40 | 1 18 19 32 39 | ringcld | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃 ) ) ∧ ( 𝑗 ∈ 𝑂 ∧ 𝑙 ∈ 𝑁 ) ) → ( ( 𝑙 𝑌 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ∈ 𝐵 ) |
| 41 | 1 18 19 26 40 | ringcld | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃 ) ) ∧ ( 𝑗 ∈ 𝑂 ∧ 𝑙 ∈ 𝑁 ) ) → ( ( 𝑖 𝑋 𝑙 ) ( .r ‘ 𝑅 ) ( ( 𝑙 𝑌 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) ∈ 𝐵 ) |
| 42 | 1 15 16 17 41 | gsumcom3fi | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃 ) ) → ( 𝑅 Σg ( 𝑗 ∈ 𝑂 ↦ ( 𝑅 Σg ( 𝑙 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑙 ) ( .r ‘ 𝑅 ) ( ( 𝑙 𝑌 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) ) ) ) ) = ( 𝑅 Σg ( 𝑙 ∈ 𝑁 ↦ ( 𝑅 Σg ( 𝑗 ∈ 𝑂 ↦ ( ( 𝑖 𝑋 𝑙 ) ( .r ‘ 𝑅 ) ( ( 𝑙 𝑌 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) ) ) ) ) ) |
| 43 | 2 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃 ) ) ∧ 𝑗 ∈ 𝑂 ) → 𝑅 ∈ Ring ) |
| 44 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃 ) ) ∧ 𝑗 ∈ 𝑂 ) → 𝑀 ∈ Fin ) |
| 45 | 4 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃 ) ) ∧ 𝑗 ∈ 𝑂 ) → 𝑁 ∈ Fin ) |
| 46 | 5 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃 ) ) ∧ 𝑗 ∈ 𝑂 ) → 𝑂 ∈ Fin ) |
| 47 | 7 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃 ) ) ∧ 𝑗 ∈ 𝑂 ) → 𝑋 ∈ ( 𝐵 ↑m ( 𝑀 × 𝑁 ) ) ) |
| 48 | 8 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃 ) ) ∧ 𝑗 ∈ 𝑂 ) → 𝑌 ∈ ( 𝐵 ↑m ( 𝑁 × 𝑂 ) ) ) |
| 49 | simplrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃 ) ) ∧ 𝑗 ∈ 𝑂 ) → 𝑖 ∈ 𝑀 ) | |
| 50 | 10 1 18 43 44 45 46 47 48 49 36 | mamufv | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃 ) ) ∧ 𝑗 ∈ 𝑂 ) → ( 𝑖 ( 𝑋 𝐹 𝑌 ) 𝑗 ) = ( 𝑅 Σg ( 𝑙 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑙 ) ( .r ‘ 𝑅 ) ( 𝑙 𝑌 𝑗 ) ) ) ) ) |
| 51 | 50 | oveq1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃 ) ) ∧ 𝑗 ∈ 𝑂 ) → ( ( 𝑖 ( 𝑋 𝐹 𝑌 ) 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) = ( ( 𝑅 Σg ( 𝑙 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑙 ) ( .r ‘ 𝑅 ) ( 𝑙 𝑌 𝑗 ) ) ) ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) |
| 52 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 53 | 1 18 19 26 32 | ringcld | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃 ) ) ∧ ( 𝑗 ∈ 𝑂 ∧ 𝑙 ∈ 𝑁 ) ) → ( ( 𝑖 𝑋 𝑙 ) ( .r ‘ 𝑅 ) ( 𝑙 𝑌 𝑗 ) ) ∈ 𝐵 ) |
| 54 | 53 | anassrs | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃 ) ) ∧ 𝑗 ∈ 𝑂 ) ∧ 𝑙 ∈ 𝑁 ) → ( ( 𝑖 𝑋 𝑙 ) ( .r ‘ 𝑅 ) ( 𝑙 𝑌 𝑗 ) ) ∈ 𝐵 ) |
| 55 | eqid | ⊢ ( 𝑙 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑙 ) ( .r ‘ 𝑅 ) ( 𝑙 𝑌 𝑗 ) ) ) = ( 𝑙 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑙 ) ( .r ‘ 𝑅 ) ( 𝑙 𝑌 𝑗 ) ) ) | |
| 56 | ovexd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃 ) ) ∧ 𝑗 ∈ 𝑂 ) ∧ 𝑙 ∈ 𝑁 ) → ( ( 𝑖 𝑋 𝑙 ) ( .r ‘ 𝑅 ) ( 𝑙 𝑌 𝑗 ) ) ∈ V ) | |
| 57 | fvexd | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃 ) ) ∧ 𝑗 ∈ 𝑂 ) → ( 0g ‘ 𝑅 ) ∈ V ) | |
| 58 | 55 45 56 57 | fsuppmptdm | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃 ) ) ∧ 𝑗 ∈ 𝑂 ) → ( 𝑙 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑙 ) ( .r ‘ 𝑅 ) ( 𝑙 𝑌 𝑗 ) ) ) finSupp ( 0g ‘ 𝑅 ) ) |
| 59 | 1 52 18 43 45 38 54 58 | gsummulc1 | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃 ) ) ∧ 𝑗 ∈ 𝑂 ) → ( 𝑅 Σg ( 𝑙 ∈ 𝑁 ↦ ( ( ( 𝑖 𝑋 𝑙 ) ( .r ‘ 𝑅 ) ( 𝑙 𝑌 𝑗 ) ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) ) = ( ( 𝑅 Σg ( 𝑙 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑙 ) ( .r ‘ 𝑅 ) ( 𝑙 𝑌 𝑗 ) ) ) ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) |
| 60 | 1 18 | ringass | ⊢ ( ( 𝑅 ∈ Ring ∧ ( ( 𝑖 𝑋 𝑙 ) ∈ 𝐵 ∧ ( 𝑙 𝑌 𝑗 ) ∈ 𝐵 ∧ ( 𝑗 𝑍 𝑘 ) ∈ 𝐵 ) ) → ( ( ( 𝑖 𝑋 𝑙 ) ( .r ‘ 𝑅 ) ( 𝑙 𝑌 𝑗 ) ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) = ( ( 𝑖 𝑋 𝑙 ) ( .r ‘ 𝑅 ) ( ( 𝑙 𝑌 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) ) |
| 61 | 19 26 32 39 60 | syl13anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃 ) ) ∧ ( 𝑗 ∈ 𝑂 ∧ 𝑙 ∈ 𝑁 ) ) → ( ( ( 𝑖 𝑋 𝑙 ) ( .r ‘ 𝑅 ) ( 𝑙 𝑌 𝑗 ) ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) = ( ( 𝑖 𝑋 𝑙 ) ( .r ‘ 𝑅 ) ( ( 𝑙 𝑌 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) ) |
| 62 | 61 | anassrs | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃 ) ) ∧ 𝑗 ∈ 𝑂 ) ∧ 𝑙 ∈ 𝑁 ) → ( ( ( 𝑖 𝑋 𝑙 ) ( .r ‘ 𝑅 ) ( 𝑙 𝑌 𝑗 ) ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) = ( ( 𝑖 𝑋 𝑙 ) ( .r ‘ 𝑅 ) ( ( 𝑙 𝑌 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) ) |
| 63 | 62 | mpteq2dva | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃 ) ) ∧ 𝑗 ∈ 𝑂 ) → ( 𝑙 ∈ 𝑁 ↦ ( ( ( 𝑖 𝑋 𝑙 ) ( .r ‘ 𝑅 ) ( 𝑙 𝑌 𝑗 ) ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) = ( 𝑙 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑙 ) ( .r ‘ 𝑅 ) ( ( 𝑙 𝑌 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) ) ) |
| 64 | 63 | oveq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃 ) ) ∧ 𝑗 ∈ 𝑂 ) → ( 𝑅 Σg ( 𝑙 ∈ 𝑁 ↦ ( ( ( 𝑖 𝑋 𝑙 ) ( .r ‘ 𝑅 ) ( 𝑙 𝑌 𝑗 ) ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) ) = ( 𝑅 Σg ( 𝑙 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑙 ) ( .r ‘ 𝑅 ) ( ( 𝑙 𝑌 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) ) ) ) |
| 65 | 51 59 64 | 3eqtr2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃 ) ) ∧ 𝑗 ∈ 𝑂 ) → ( ( 𝑖 ( 𝑋 𝐹 𝑌 ) 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) = ( 𝑅 Σg ( 𝑙 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑙 ) ( .r ‘ 𝑅 ) ( ( 𝑙 𝑌 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) ) ) ) |
| 66 | 65 | mpteq2dva | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃 ) ) → ( 𝑗 ∈ 𝑂 ↦ ( ( 𝑖 ( 𝑋 𝐹 𝑌 ) 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) = ( 𝑗 ∈ 𝑂 ↦ ( 𝑅 Σg ( 𝑙 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑙 ) ( .r ‘ 𝑅 ) ( ( 𝑙 𝑌 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) ) ) ) ) |
| 67 | 66 | oveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃 ) ) → ( 𝑅 Σg ( 𝑗 ∈ 𝑂 ↦ ( ( 𝑖 ( 𝑋 𝐹 𝑌 ) 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) ) = ( 𝑅 Σg ( 𝑗 ∈ 𝑂 ↦ ( 𝑅 Σg ( 𝑙 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑙 ) ( .r ‘ 𝑅 ) ( ( 𝑙 𝑌 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) ) ) ) ) ) |
| 68 | 2 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃 ) ) ∧ 𝑙 ∈ 𝑁 ) → 𝑅 ∈ Ring ) |
| 69 | 4 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃 ) ) ∧ 𝑙 ∈ 𝑁 ) → 𝑁 ∈ Fin ) |
| 70 | 5 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃 ) ) ∧ 𝑙 ∈ 𝑁 ) → 𝑂 ∈ Fin ) |
| 71 | 6 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃 ) ) ∧ 𝑙 ∈ 𝑁 ) → 𝑃 ∈ Fin ) |
| 72 | 8 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃 ) ) ∧ 𝑙 ∈ 𝑁 ) → 𝑌 ∈ ( 𝐵 ↑m ( 𝑁 × 𝑂 ) ) ) |
| 73 | 9 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃 ) ) ∧ 𝑙 ∈ 𝑁 ) → 𝑍 ∈ ( 𝐵 ↑m ( 𝑂 × 𝑃 ) ) ) |
| 74 | simplrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃 ) ) ∧ 𝑙 ∈ 𝑁 ) → 𝑘 ∈ 𝑃 ) | |
| 75 | 13 1 18 68 69 70 71 72 73 24 74 | mamufv | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃 ) ) ∧ 𝑙 ∈ 𝑁 ) → ( 𝑙 ( 𝑌 𝐼 𝑍 ) 𝑘 ) = ( 𝑅 Σg ( 𝑗 ∈ 𝑂 ↦ ( ( 𝑙 𝑌 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) ) ) |
| 76 | 75 | oveq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃 ) ) ∧ 𝑙 ∈ 𝑁 ) → ( ( 𝑖 𝑋 𝑙 ) ( .r ‘ 𝑅 ) ( 𝑙 ( 𝑌 𝐼 𝑍 ) 𝑘 ) ) = ( ( 𝑖 𝑋 𝑙 ) ( .r ‘ 𝑅 ) ( 𝑅 Σg ( 𝑗 ∈ 𝑂 ↦ ( ( 𝑙 𝑌 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) ) ) ) |
| 77 | 40 | anass1rs | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃 ) ) ∧ 𝑙 ∈ 𝑁 ) ∧ 𝑗 ∈ 𝑂 ) → ( ( 𝑙 𝑌 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ∈ 𝐵 ) |
| 78 | eqid | ⊢ ( 𝑗 ∈ 𝑂 ↦ ( ( 𝑙 𝑌 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) = ( 𝑗 ∈ 𝑂 ↦ ( ( 𝑙 𝑌 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) | |
| 79 | ovexd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃 ) ) ∧ 𝑙 ∈ 𝑁 ) ∧ 𝑗 ∈ 𝑂 ) → ( ( 𝑙 𝑌 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ∈ V ) | |
| 80 | fvexd | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃 ) ) ∧ 𝑙 ∈ 𝑁 ) → ( 0g ‘ 𝑅 ) ∈ V ) | |
| 81 | 78 70 79 80 | fsuppmptdm | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃 ) ) ∧ 𝑙 ∈ 𝑁 ) → ( 𝑗 ∈ 𝑂 ↦ ( ( 𝑙 𝑌 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) finSupp ( 0g ‘ 𝑅 ) ) |
| 82 | 1 52 18 68 70 25 77 81 | gsummulc2 | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃 ) ) ∧ 𝑙 ∈ 𝑁 ) → ( 𝑅 Σg ( 𝑗 ∈ 𝑂 ↦ ( ( 𝑖 𝑋 𝑙 ) ( .r ‘ 𝑅 ) ( ( 𝑙 𝑌 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) ) ) = ( ( 𝑖 𝑋 𝑙 ) ( .r ‘ 𝑅 ) ( 𝑅 Σg ( 𝑗 ∈ 𝑂 ↦ ( ( 𝑙 𝑌 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) ) ) ) |
| 83 | 76 82 | eqtr4d | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃 ) ) ∧ 𝑙 ∈ 𝑁 ) → ( ( 𝑖 𝑋 𝑙 ) ( .r ‘ 𝑅 ) ( 𝑙 ( 𝑌 𝐼 𝑍 ) 𝑘 ) ) = ( 𝑅 Σg ( 𝑗 ∈ 𝑂 ↦ ( ( 𝑖 𝑋 𝑙 ) ( .r ‘ 𝑅 ) ( ( 𝑙 𝑌 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) ) ) ) |
| 84 | 83 | mpteq2dva | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃 ) ) → ( 𝑙 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑙 ) ( .r ‘ 𝑅 ) ( 𝑙 ( 𝑌 𝐼 𝑍 ) 𝑘 ) ) ) = ( 𝑙 ∈ 𝑁 ↦ ( 𝑅 Σg ( 𝑗 ∈ 𝑂 ↦ ( ( 𝑖 𝑋 𝑙 ) ( .r ‘ 𝑅 ) ( ( 𝑙 𝑌 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) ) ) ) ) |
| 85 | 84 | oveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃 ) ) → ( 𝑅 Σg ( 𝑙 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑙 ) ( .r ‘ 𝑅 ) ( 𝑙 ( 𝑌 𝐼 𝑍 ) 𝑘 ) ) ) ) = ( 𝑅 Σg ( 𝑙 ∈ 𝑁 ↦ ( 𝑅 Σg ( 𝑗 ∈ 𝑂 ↦ ( ( 𝑖 𝑋 𝑙 ) ( .r ‘ 𝑅 ) ( ( 𝑙 𝑌 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) ) ) ) ) ) |
| 86 | 42 67 85 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃 ) ) → ( 𝑅 Σg ( 𝑗 ∈ 𝑂 ↦ ( ( 𝑖 ( 𝑋 𝐹 𝑌 ) 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) ) = ( 𝑅 Σg ( 𝑙 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑙 ) ( .r ‘ 𝑅 ) ( 𝑙 ( 𝑌 𝐼 𝑍 ) 𝑘 ) ) ) ) ) |
| 87 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃 ) ) → 𝑅 ∈ Ring ) |
| 88 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃 ) ) → 𝑀 ∈ Fin ) |
| 89 | 6 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃 ) ) → 𝑃 ∈ Fin ) |
| 90 | 1 2 10 3 4 5 7 8 | mamucl | ⊢ ( 𝜑 → ( 𝑋 𝐹 𝑌 ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑂 ) ) ) |
| 91 | 90 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃 ) ) → ( 𝑋 𝐹 𝑌 ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑂 ) ) ) |
| 92 | 9 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃 ) ) → 𝑍 ∈ ( 𝐵 ↑m ( 𝑂 × 𝑃 ) ) ) |
| 93 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃 ) ) → 𝑖 ∈ 𝑀 ) | |
| 94 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃 ) ) → 𝑘 ∈ 𝑃 ) | |
| 95 | 11 1 18 87 88 16 89 91 92 93 94 | mamufv | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃 ) ) → ( 𝑖 ( ( 𝑋 𝐹 𝑌 ) 𝐺 𝑍 ) 𝑘 ) = ( 𝑅 Σg ( 𝑗 ∈ 𝑂 ↦ ( ( 𝑖 ( 𝑋 𝐹 𝑌 ) 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) ) ) |
| 96 | 7 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃 ) ) → 𝑋 ∈ ( 𝐵 ↑m ( 𝑀 × 𝑁 ) ) ) |
| 97 | 1 2 13 4 5 6 8 9 | mamucl | ⊢ ( 𝜑 → ( 𝑌 𝐼 𝑍 ) ∈ ( 𝐵 ↑m ( 𝑁 × 𝑃 ) ) ) |
| 98 | 97 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃 ) ) → ( 𝑌 𝐼 𝑍 ) ∈ ( 𝐵 ↑m ( 𝑁 × 𝑃 ) ) ) |
| 99 | 12 1 18 87 88 17 89 96 98 93 94 | mamufv | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃 ) ) → ( 𝑖 ( 𝑋 𝐻 ( 𝑌 𝐼 𝑍 ) ) 𝑘 ) = ( 𝑅 Σg ( 𝑙 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑙 ) ( .r ‘ 𝑅 ) ( 𝑙 ( 𝑌 𝐼 𝑍 ) 𝑘 ) ) ) ) ) |
| 100 | 86 95 99 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃 ) ) → ( 𝑖 ( ( 𝑋 𝐹 𝑌 ) 𝐺 𝑍 ) 𝑘 ) = ( 𝑖 ( 𝑋 𝐻 ( 𝑌 𝐼 𝑍 ) ) 𝑘 ) ) |
| 101 | 100 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑖 ∈ 𝑀 ∀ 𝑘 ∈ 𝑃 ( 𝑖 ( ( 𝑋 𝐹 𝑌 ) 𝐺 𝑍 ) 𝑘 ) = ( 𝑖 ( 𝑋 𝐻 ( 𝑌 𝐼 𝑍 ) ) 𝑘 ) ) |
| 102 | 1 2 11 3 5 6 90 9 | mamucl | ⊢ ( 𝜑 → ( ( 𝑋 𝐹 𝑌 ) 𝐺 𝑍 ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑃 ) ) ) |
| 103 | elmapi | ⊢ ( ( ( 𝑋 𝐹 𝑌 ) 𝐺 𝑍 ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑃 ) ) → ( ( 𝑋 𝐹 𝑌 ) 𝐺 𝑍 ) : ( 𝑀 × 𝑃 ) ⟶ 𝐵 ) | |
| 104 | ffn | ⊢ ( ( ( 𝑋 𝐹 𝑌 ) 𝐺 𝑍 ) : ( 𝑀 × 𝑃 ) ⟶ 𝐵 → ( ( 𝑋 𝐹 𝑌 ) 𝐺 𝑍 ) Fn ( 𝑀 × 𝑃 ) ) | |
| 105 | 102 103 104 | 3syl | ⊢ ( 𝜑 → ( ( 𝑋 𝐹 𝑌 ) 𝐺 𝑍 ) Fn ( 𝑀 × 𝑃 ) ) |
| 106 | 1 2 12 3 4 6 7 97 | mamucl | ⊢ ( 𝜑 → ( 𝑋 𝐻 ( 𝑌 𝐼 𝑍 ) ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑃 ) ) ) |
| 107 | elmapi | ⊢ ( ( 𝑋 𝐻 ( 𝑌 𝐼 𝑍 ) ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑃 ) ) → ( 𝑋 𝐻 ( 𝑌 𝐼 𝑍 ) ) : ( 𝑀 × 𝑃 ) ⟶ 𝐵 ) | |
| 108 | ffn | ⊢ ( ( 𝑋 𝐻 ( 𝑌 𝐼 𝑍 ) ) : ( 𝑀 × 𝑃 ) ⟶ 𝐵 → ( 𝑋 𝐻 ( 𝑌 𝐼 𝑍 ) ) Fn ( 𝑀 × 𝑃 ) ) | |
| 109 | 106 107 108 | 3syl | ⊢ ( 𝜑 → ( 𝑋 𝐻 ( 𝑌 𝐼 𝑍 ) ) Fn ( 𝑀 × 𝑃 ) ) |
| 110 | eqfnov2 | ⊢ ( ( ( ( 𝑋 𝐹 𝑌 ) 𝐺 𝑍 ) Fn ( 𝑀 × 𝑃 ) ∧ ( 𝑋 𝐻 ( 𝑌 𝐼 𝑍 ) ) Fn ( 𝑀 × 𝑃 ) ) → ( ( ( 𝑋 𝐹 𝑌 ) 𝐺 𝑍 ) = ( 𝑋 𝐻 ( 𝑌 𝐼 𝑍 ) ) ↔ ∀ 𝑖 ∈ 𝑀 ∀ 𝑘 ∈ 𝑃 ( 𝑖 ( ( 𝑋 𝐹 𝑌 ) 𝐺 𝑍 ) 𝑘 ) = ( 𝑖 ( 𝑋 𝐻 ( 𝑌 𝐼 𝑍 ) ) 𝑘 ) ) ) | |
| 111 | 105 109 110 | syl2anc | ⊢ ( 𝜑 → ( ( ( 𝑋 𝐹 𝑌 ) 𝐺 𝑍 ) = ( 𝑋 𝐻 ( 𝑌 𝐼 𝑍 ) ) ↔ ∀ 𝑖 ∈ 𝑀 ∀ 𝑘 ∈ 𝑃 ( 𝑖 ( ( 𝑋 𝐹 𝑌 ) 𝐺 𝑍 ) 𝑘 ) = ( 𝑖 ( 𝑋 𝐻 ( 𝑌 𝐼 𝑍 ) ) 𝑘 ) ) ) |
| 112 | 101 111 | mpbird | ⊢ ( 𝜑 → ( ( 𝑋 𝐹 𝑌 ) 𝐺 𝑍 ) = ( 𝑋 𝐻 ( 𝑌 𝐼 𝑍 ) ) ) |