This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Exponentiation of -1 by an odd power. (Contributed by AV, 26-Jun-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | m1expo | ⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁 ) → ( - 1 ↑ 𝑁 ) = - 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odd2np1 | ⊢ ( 𝑁 ∈ ℤ → ( ¬ 2 ∥ 𝑁 ↔ ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) | |
| 2 | oveq2 | ⊢ ( 𝑁 = ( ( 2 · 𝑛 ) + 1 ) → ( - 1 ↑ 𝑁 ) = ( - 1 ↑ ( ( 2 · 𝑛 ) + 1 ) ) ) | |
| 3 | 2 | eqcoms | ⊢ ( ( ( 2 · 𝑛 ) + 1 ) = 𝑁 → ( - 1 ↑ 𝑁 ) = ( - 1 ↑ ( ( 2 · 𝑛 ) + 1 ) ) ) |
| 4 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 5 | 4 | a1i | ⊢ ( 𝑛 ∈ ℤ → - 1 ∈ ℂ ) |
| 6 | neg1ne0 | ⊢ - 1 ≠ 0 | |
| 7 | 6 | a1i | ⊢ ( 𝑛 ∈ ℤ → - 1 ≠ 0 ) |
| 8 | 2z | ⊢ 2 ∈ ℤ | |
| 9 | 8 | a1i | ⊢ ( 𝑛 ∈ ℤ → 2 ∈ ℤ ) |
| 10 | id | ⊢ ( 𝑛 ∈ ℤ → 𝑛 ∈ ℤ ) | |
| 11 | 9 10 | zmulcld | ⊢ ( 𝑛 ∈ ℤ → ( 2 · 𝑛 ) ∈ ℤ ) |
| 12 | 5 7 11 | expp1zd | ⊢ ( 𝑛 ∈ ℤ → ( - 1 ↑ ( ( 2 · 𝑛 ) + 1 ) ) = ( ( - 1 ↑ ( 2 · 𝑛 ) ) · - 1 ) ) |
| 13 | m1expeven | ⊢ ( 𝑛 ∈ ℤ → ( - 1 ↑ ( 2 · 𝑛 ) ) = 1 ) | |
| 14 | 13 | oveq1d | ⊢ ( 𝑛 ∈ ℤ → ( ( - 1 ↑ ( 2 · 𝑛 ) ) · - 1 ) = ( 1 · - 1 ) ) |
| 15 | 4 | mullidi | ⊢ ( 1 · - 1 ) = - 1 |
| 16 | 14 15 | eqtrdi | ⊢ ( 𝑛 ∈ ℤ → ( ( - 1 ↑ ( 2 · 𝑛 ) ) · - 1 ) = - 1 ) |
| 17 | 12 16 | eqtrd | ⊢ ( 𝑛 ∈ ℤ → ( - 1 ↑ ( ( 2 · 𝑛 ) + 1 ) ) = - 1 ) |
| 18 | 17 | adantl | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → ( - 1 ↑ ( ( 2 · 𝑛 ) + 1 ) ) = - 1 ) |
| 19 | 3 18 | sylan9eqr | ⊢ ( ( ( 𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) → ( - 1 ↑ 𝑁 ) = - 1 ) |
| 20 | 19 | rexlimdva2 | ⊢ ( 𝑁 ∈ ℤ → ( ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 → ( - 1 ↑ 𝑁 ) = - 1 ) ) |
| 21 | 1 20 | sylbid | ⊢ ( 𝑁 ∈ ℤ → ( ¬ 2 ∥ 𝑁 → ( - 1 ↑ 𝑁 ) = - 1 ) ) |
| 22 | 21 | imp | ⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁 ) → ( - 1 ↑ 𝑁 ) = - 1 ) |