This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Exponentiation of -1 by an odd power. (Contributed by AV, 26-Jun-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | m1expo | |- ( ( N e. ZZ /\ -. 2 || N ) -> ( -u 1 ^ N ) = -u 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odd2np1 | |- ( N e. ZZ -> ( -. 2 || N <-> E. n e. ZZ ( ( 2 x. n ) + 1 ) = N ) ) |
|
| 2 | oveq2 | |- ( N = ( ( 2 x. n ) + 1 ) -> ( -u 1 ^ N ) = ( -u 1 ^ ( ( 2 x. n ) + 1 ) ) ) |
|
| 3 | 2 | eqcoms | |- ( ( ( 2 x. n ) + 1 ) = N -> ( -u 1 ^ N ) = ( -u 1 ^ ( ( 2 x. n ) + 1 ) ) ) |
| 4 | neg1cn | |- -u 1 e. CC |
|
| 5 | 4 | a1i | |- ( n e. ZZ -> -u 1 e. CC ) |
| 6 | neg1ne0 | |- -u 1 =/= 0 |
|
| 7 | 6 | a1i | |- ( n e. ZZ -> -u 1 =/= 0 ) |
| 8 | 2z | |- 2 e. ZZ |
|
| 9 | 8 | a1i | |- ( n e. ZZ -> 2 e. ZZ ) |
| 10 | id | |- ( n e. ZZ -> n e. ZZ ) |
|
| 11 | 9 10 | zmulcld | |- ( n e. ZZ -> ( 2 x. n ) e. ZZ ) |
| 12 | 5 7 11 | expp1zd | |- ( n e. ZZ -> ( -u 1 ^ ( ( 2 x. n ) + 1 ) ) = ( ( -u 1 ^ ( 2 x. n ) ) x. -u 1 ) ) |
| 13 | m1expeven | |- ( n e. ZZ -> ( -u 1 ^ ( 2 x. n ) ) = 1 ) |
|
| 14 | 13 | oveq1d | |- ( n e. ZZ -> ( ( -u 1 ^ ( 2 x. n ) ) x. -u 1 ) = ( 1 x. -u 1 ) ) |
| 15 | 4 | mullidi | |- ( 1 x. -u 1 ) = -u 1 |
| 16 | 14 15 | eqtrdi | |- ( n e. ZZ -> ( ( -u 1 ^ ( 2 x. n ) ) x. -u 1 ) = -u 1 ) |
| 17 | 12 16 | eqtrd | |- ( n e. ZZ -> ( -u 1 ^ ( ( 2 x. n ) + 1 ) ) = -u 1 ) |
| 18 | 17 | adantl | |- ( ( N e. ZZ /\ n e. ZZ ) -> ( -u 1 ^ ( ( 2 x. n ) + 1 ) ) = -u 1 ) |
| 19 | 3 18 | sylan9eqr | |- ( ( ( N e. ZZ /\ n e. ZZ ) /\ ( ( 2 x. n ) + 1 ) = N ) -> ( -u 1 ^ N ) = -u 1 ) |
| 20 | 19 | rexlimdva2 | |- ( N e. ZZ -> ( E. n e. ZZ ( ( 2 x. n ) + 1 ) = N -> ( -u 1 ^ N ) = -u 1 ) ) |
| 21 | 1 20 | sylbid | |- ( N e. ZZ -> ( -. 2 || N -> ( -u 1 ^ N ) = -u 1 ) ) |
| 22 | 21 | imp | |- ( ( N e. ZZ /\ -. 2 || N ) -> ( -u 1 ^ N ) = -u 1 ) |