This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for lublecl and lubid . (Contributed by NM, 8-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lublecl.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| lublecl.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| lublecl.u | ⊢ 𝑈 = ( lub ‘ 𝐾 ) | ||
| lublecl.k | ⊢ ( 𝜑 → 𝐾 ∈ Poset ) | ||
| lublecl.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| Assertion | lublecllem | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( ∀ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } 𝑧 ≤ 𝑥 ∧ ∀ 𝑤 ∈ 𝐵 ( ∀ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } 𝑧 ≤ 𝑤 → 𝑥 ≤ 𝑤 ) ) ↔ 𝑥 = 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lublecl.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | lublecl.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | lublecl.u | ⊢ 𝑈 = ( lub ‘ 𝐾 ) | |
| 4 | lublecl.k | ⊢ ( 𝜑 → 𝐾 ∈ Poset ) | |
| 5 | lublecl.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 6 | breq1 | ⊢ ( 𝑦 = 𝑧 → ( 𝑦 ≤ 𝑋 ↔ 𝑧 ≤ 𝑋 ) ) | |
| 7 | 6 | ralrab | ⊢ ( ∀ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } 𝑧 ≤ 𝑥 ↔ ∀ 𝑧 ∈ 𝐵 ( 𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑥 ) ) |
| 8 | 6 | ralrab | ⊢ ( ∀ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } 𝑧 ≤ 𝑤 ↔ ∀ 𝑧 ∈ 𝐵 ( 𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑤 ) ) |
| 9 | 8 | imbi1i | ⊢ ( ( ∀ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } 𝑧 ≤ 𝑤 → 𝑥 ≤ 𝑤 ) ↔ ( ∀ 𝑧 ∈ 𝐵 ( 𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑤 ) → 𝑥 ≤ 𝑤 ) ) |
| 10 | 9 | ralbii | ⊢ ( ∀ 𝑤 ∈ 𝐵 ( ∀ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } 𝑧 ≤ 𝑤 → 𝑥 ≤ 𝑤 ) ↔ ∀ 𝑤 ∈ 𝐵 ( ∀ 𝑧 ∈ 𝐵 ( 𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑤 ) → 𝑥 ≤ 𝑤 ) ) |
| 11 | 7 10 | anbi12i | ⊢ ( ( ∀ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } 𝑧 ≤ 𝑥 ∧ ∀ 𝑤 ∈ 𝐵 ( ∀ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } 𝑧 ≤ 𝑤 → 𝑥 ≤ 𝑤 ) ) ↔ ( ∀ 𝑧 ∈ 𝐵 ( 𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑥 ) ∧ ∀ 𝑤 ∈ 𝐵 ( ∀ 𝑧 ∈ 𝐵 ( 𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑤 ) → 𝑥 ≤ 𝑤 ) ) ) |
| 12 | 1 2 | posref | ⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ≤ 𝑋 ) |
| 13 | 4 5 12 | syl2anc | ⊢ ( 𝜑 → 𝑋 ≤ 𝑋 ) |
| 14 | breq1 | ⊢ ( 𝑧 = 𝑋 → ( 𝑧 ≤ 𝑋 ↔ 𝑋 ≤ 𝑋 ) ) | |
| 15 | breq1 | ⊢ ( 𝑧 = 𝑋 → ( 𝑧 ≤ 𝑥 ↔ 𝑋 ≤ 𝑥 ) ) | |
| 16 | 14 15 | imbi12d | ⊢ ( 𝑧 = 𝑋 → ( ( 𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑥 ) ↔ ( 𝑋 ≤ 𝑋 → 𝑋 ≤ 𝑥 ) ) ) |
| 17 | 16 | rspcva | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ ∀ 𝑧 ∈ 𝐵 ( 𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑥 ) ) → ( 𝑋 ≤ 𝑋 → 𝑋 ≤ 𝑥 ) ) |
| 18 | 13 17 | syl5com | ⊢ ( 𝜑 → ( ( 𝑋 ∈ 𝐵 ∧ ∀ 𝑧 ∈ 𝐵 ( 𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑥 ) ) → 𝑋 ≤ 𝑥 ) ) |
| 19 | 5 18 | mpand | ⊢ ( 𝜑 → ( ∀ 𝑧 ∈ 𝐵 ( 𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑥 ) → 𝑋 ≤ 𝑥 ) ) |
| 20 | 19 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ∀ 𝑧 ∈ 𝐵 ( 𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑥 ) → 𝑋 ≤ 𝑥 ) ) |
| 21 | idd | ⊢ ( 𝑧 ∈ 𝐵 → ( 𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑋 ) ) | |
| 22 | 21 | rgen | ⊢ ∀ 𝑧 ∈ 𝐵 ( 𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑋 ) |
| 23 | breq2 | ⊢ ( 𝑤 = 𝑋 → ( 𝑧 ≤ 𝑤 ↔ 𝑧 ≤ 𝑋 ) ) | |
| 24 | 23 | imbi2d | ⊢ ( 𝑤 = 𝑋 → ( ( 𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑤 ) ↔ ( 𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑋 ) ) ) |
| 25 | 24 | ralbidv | ⊢ ( 𝑤 = 𝑋 → ( ∀ 𝑧 ∈ 𝐵 ( 𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑤 ) ↔ ∀ 𝑧 ∈ 𝐵 ( 𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑋 ) ) ) |
| 26 | breq2 | ⊢ ( 𝑤 = 𝑋 → ( 𝑥 ≤ 𝑤 ↔ 𝑥 ≤ 𝑋 ) ) | |
| 27 | 25 26 | imbi12d | ⊢ ( 𝑤 = 𝑋 → ( ( ∀ 𝑧 ∈ 𝐵 ( 𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑤 ) → 𝑥 ≤ 𝑤 ) ↔ ( ∀ 𝑧 ∈ 𝐵 ( 𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑋 ) → 𝑥 ≤ 𝑋 ) ) ) |
| 28 | 27 | rspcv | ⊢ ( 𝑋 ∈ 𝐵 → ( ∀ 𝑤 ∈ 𝐵 ( ∀ 𝑧 ∈ 𝐵 ( 𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑤 ) → 𝑥 ≤ 𝑤 ) → ( ∀ 𝑧 ∈ 𝐵 ( 𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑋 ) → 𝑥 ≤ 𝑋 ) ) ) |
| 29 | 5 28 | syl | ⊢ ( 𝜑 → ( ∀ 𝑤 ∈ 𝐵 ( ∀ 𝑧 ∈ 𝐵 ( 𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑤 ) → 𝑥 ≤ 𝑤 ) → ( ∀ 𝑧 ∈ 𝐵 ( 𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑋 ) → 𝑥 ≤ 𝑋 ) ) ) |
| 30 | 22 29 | mpii | ⊢ ( 𝜑 → ( ∀ 𝑤 ∈ 𝐵 ( ∀ 𝑧 ∈ 𝐵 ( 𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑤 ) → 𝑥 ≤ 𝑤 ) → 𝑥 ≤ 𝑋 ) ) |
| 31 | 30 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ∀ 𝑤 ∈ 𝐵 ( ∀ 𝑧 ∈ 𝐵 ( 𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑤 ) → 𝑥 ≤ 𝑤 ) → 𝑥 ≤ 𝑋 ) ) |
| 32 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐾 ∈ Poset ) |
| 33 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) | |
| 34 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) |
| 35 | 1 2 | posasymb | ⊢ ( ( 𝐾 ∈ Poset ∧ 𝑥 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑥 ≤ 𝑋 ∧ 𝑋 ≤ 𝑥 ) ↔ 𝑥 = 𝑋 ) ) |
| 36 | 32 33 34 35 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝑥 ≤ 𝑋 ∧ 𝑋 ≤ 𝑥 ) ↔ 𝑥 = 𝑋 ) ) |
| 37 | 36 | biimpd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝑥 ≤ 𝑋 ∧ 𝑋 ≤ 𝑥 ) → 𝑥 = 𝑋 ) ) |
| 38 | 37 | ancomsd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝑋 ≤ 𝑥 ∧ 𝑥 ≤ 𝑋 ) → 𝑥 = 𝑋 ) ) |
| 39 | 20 31 38 | syl2and | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( ∀ 𝑧 ∈ 𝐵 ( 𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑥 ) ∧ ∀ 𝑤 ∈ 𝐵 ( ∀ 𝑧 ∈ 𝐵 ( 𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑤 ) → 𝑥 ≤ 𝑤 ) ) → 𝑥 = 𝑋 ) ) |
| 40 | breq2 | ⊢ ( 𝑥 = 𝑋 → ( 𝑧 ≤ 𝑥 ↔ 𝑧 ≤ 𝑋 ) ) | |
| 41 | 40 | biimprd | ⊢ ( 𝑥 = 𝑋 → ( 𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑥 ) ) |
| 42 | 41 | ralrimivw | ⊢ ( 𝑥 = 𝑋 → ∀ 𝑧 ∈ 𝐵 ( 𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑥 ) ) |
| 43 | 42 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑥 = 𝑋 ) → ∀ 𝑧 ∈ 𝐵 ( 𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑥 ) ) |
| 44 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → 𝑋 ∈ 𝐵 ) |
| 45 | breq1 | ⊢ ( 𝑧 = 𝑋 → ( 𝑧 ≤ 𝑤 ↔ 𝑋 ≤ 𝑤 ) ) | |
| 46 | 14 45 | imbi12d | ⊢ ( 𝑧 = 𝑋 → ( ( 𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑤 ) ↔ ( 𝑋 ≤ 𝑋 → 𝑋 ≤ 𝑤 ) ) ) |
| 47 | 46 | rspcva | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ ∀ 𝑧 ∈ 𝐵 ( 𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑤 ) ) → ( 𝑋 ≤ 𝑋 → 𝑋 ≤ 𝑤 ) ) |
| 48 | pm5.5 | ⊢ ( 𝑋 ≤ 𝑋 → ( ( 𝑋 ≤ 𝑋 → 𝑋 ≤ 𝑤 ) ↔ 𝑋 ≤ 𝑤 ) ) | |
| 49 | 13 48 | syl | ⊢ ( 𝜑 → ( ( 𝑋 ≤ 𝑋 → 𝑋 ≤ 𝑤 ) ↔ 𝑋 ≤ 𝑤 ) ) |
| 50 | breq1 | ⊢ ( 𝑥 = 𝑋 → ( 𝑥 ≤ 𝑤 ↔ 𝑋 ≤ 𝑤 ) ) | |
| 51 | 50 | bicomd | ⊢ ( 𝑥 = 𝑋 → ( 𝑋 ≤ 𝑤 ↔ 𝑥 ≤ 𝑤 ) ) |
| 52 | 49 51 | sylan9bb | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( ( 𝑋 ≤ 𝑋 → 𝑋 ≤ 𝑤 ) ↔ 𝑥 ≤ 𝑤 ) ) |
| 53 | 47 52 | imbitrid | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( ( 𝑋 ∈ 𝐵 ∧ ∀ 𝑧 ∈ 𝐵 ( 𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑤 ) ) → 𝑥 ≤ 𝑤 ) ) |
| 54 | 44 53 | mpand | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( ∀ 𝑧 ∈ 𝐵 ( 𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑤 ) → 𝑥 ≤ 𝑤 ) ) |
| 55 | 54 | ralrimivw | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ∀ 𝑤 ∈ 𝐵 ( ∀ 𝑧 ∈ 𝐵 ( 𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑤 ) → 𝑥 ≤ 𝑤 ) ) |
| 56 | 55 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑥 = 𝑋 ) → ∀ 𝑤 ∈ 𝐵 ( ∀ 𝑧 ∈ 𝐵 ( 𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑤 ) → 𝑥 ≤ 𝑤 ) ) |
| 57 | 43 56 | jca | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑥 = 𝑋 ) → ( ∀ 𝑧 ∈ 𝐵 ( 𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑥 ) ∧ ∀ 𝑤 ∈ 𝐵 ( ∀ 𝑧 ∈ 𝐵 ( 𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑤 ) → 𝑥 ≤ 𝑤 ) ) ) |
| 58 | 57 | ex | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 = 𝑋 → ( ∀ 𝑧 ∈ 𝐵 ( 𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑥 ) ∧ ∀ 𝑤 ∈ 𝐵 ( ∀ 𝑧 ∈ 𝐵 ( 𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑤 ) → 𝑥 ≤ 𝑤 ) ) ) ) |
| 59 | 39 58 | impbid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( ∀ 𝑧 ∈ 𝐵 ( 𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑥 ) ∧ ∀ 𝑤 ∈ 𝐵 ( ∀ 𝑧 ∈ 𝐵 ( 𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑤 ) → 𝑥 ≤ 𝑤 ) ) ↔ 𝑥 = 𝑋 ) ) |
| 60 | 11 59 | bitrid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( ∀ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } 𝑧 ≤ 𝑥 ∧ ∀ 𝑤 ∈ 𝐵 ( ∀ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } 𝑧 ≤ 𝑤 → 𝑥 ≤ 𝑤 ) ) ↔ 𝑥 = 𝑋 ) ) |