This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ltord1 . (Contributed by Mario Carneiro, 14-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ltord.1 | ⊢ ( 𝑥 = 𝑦 → 𝐴 = 𝐵 ) | |
| ltord.2 | ⊢ ( 𝑥 = 𝐶 → 𝐴 = 𝑀 ) | ||
| ltord.3 | ⊢ ( 𝑥 = 𝐷 → 𝐴 = 𝑁 ) | ||
| ltord.4 | ⊢ 𝑆 ⊆ ℝ | ||
| ltord.5 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐴 ∈ ℝ ) | ||
| ltord.6 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 < 𝑦 → 𝐴 < 𝐵 ) ) | ||
| Assertion | ltordlem | ⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆 ) ) → ( 𝐶 < 𝐷 → 𝑀 < 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltord.1 | ⊢ ( 𝑥 = 𝑦 → 𝐴 = 𝐵 ) | |
| 2 | ltord.2 | ⊢ ( 𝑥 = 𝐶 → 𝐴 = 𝑀 ) | |
| 3 | ltord.3 | ⊢ ( 𝑥 = 𝐷 → 𝐴 = 𝑁 ) | |
| 4 | ltord.4 | ⊢ 𝑆 ⊆ ℝ | |
| 5 | ltord.5 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐴 ∈ ℝ ) | |
| 6 | ltord.6 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 < 𝑦 → 𝐴 < 𝐵 ) ) | |
| 7 | 6 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 < 𝑦 → 𝐴 < 𝐵 ) ) |
| 8 | breq1 | ⊢ ( 𝑥 = 𝐶 → ( 𝑥 < 𝑦 ↔ 𝐶 < 𝑦 ) ) | |
| 9 | 2 | breq1d | ⊢ ( 𝑥 = 𝐶 → ( 𝐴 < 𝐵 ↔ 𝑀 < 𝐵 ) ) |
| 10 | 8 9 | imbi12d | ⊢ ( 𝑥 = 𝐶 → ( ( 𝑥 < 𝑦 → 𝐴 < 𝐵 ) ↔ ( 𝐶 < 𝑦 → 𝑀 < 𝐵 ) ) ) |
| 11 | breq2 | ⊢ ( 𝑦 = 𝐷 → ( 𝐶 < 𝑦 ↔ 𝐶 < 𝐷 ) ) | |
| 12 | eqeq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 = 𝐷 ↔ 𝑦 = 𝐷 ) ) | |
| 13 | 1 | eqeq1d | ⊢ ( 𝑥 = 𝑦 → ( 𝐴 = 𝑁 ↔ 𝐵 = 𝑁 ) ) |
| 14 | 12 13 | imbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 = 𝐷 → 𝐴 = 𝑁 ) ↔ ( 𝑦 = 𝐷 → 𝐵 = 𝑁 ) ) ) |
| 15 | 14 3 | chvarvv | ⊢ ( 𝑦 = 𝐷 → 𝐵 = 𝑁 ) |
| 16 | 15 | breq2d | ⊢ ( 𝑦 = 𝐷 → ( 𝑀 < 𝐵 ↔ 𝑀 < 𝑁 ) ) |
| 17 | 11 16 | imbi12d | ⊢ ( 𝑦 = 𝐷 → ( ( 𝐶 < 𝑦 → 𝑀 < 𝐵 ) ↔ ( 𝐶 < 𝐷 → 𝑀 < 𝑁 ) ) ) |
| 18 | 10 17 | rspc2v | ⊢ ( ( 𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆 ) → ( ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 < 𝑦 → 𝐴 < 𝐵 ) → ( 𝐶 < 𝐷 → 𝑀 < 𝑁 ) ) ) |
| 19 | 7 18 | mpan9 | ⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆 ) ) → ( 𝐶 < 𝐷 → 𝑀 < 𝑁 ) ) |