This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering property of multiplication for positive integers. (Contributed by NM, 8-Feb-1996) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ltmpi | ⊢ ( 𝐶 ∈ N → ( 𝐴 <N 𝐵 ↔ ( 𝐶 ·N 𝐴 ) <N ( 𝐶 ·N 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmmulpi | ⊢ dom ·N = ( N × N ) | |
| 2 | ltrelpi | ⊢ <N ⊆ ( N × N ) | |
| 3 | 0npi | ⊢ ¬ ∅ ∈ N | |
| 4 | pinn | ⊢ ( 𝐴 ∈ N → 𝐴 ∈ ω ) | |
| 5 | pinn | ⊢ ( 𝐵 ∈ N → 𝐵 ∈ ω ) | |
| 6 | elni2 | ⊢ ( 𝐶 ∈ N ↔ ( 𝐶 ∈ ω ∧ ∅ ∈ 𝐶 ) ) | |
| 7 | iba | ⊢ ( ∅ ∈ 𝐶 → ( 𝐴 ∈ 𝐵 ↔ ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐶 ) ) ) | |
| 8 | nnmord | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐶 ) ↔ ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) ) | |
| 9 | 7 8 | sylan9bbr | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → ( 𝐴 ∈ 𝐵 ↔ ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) ) |
| 10 | 9 | 3exp1 | ⊢ ( 𝐴 ∈ ω → ( 𝐵 ∈ ω → ( 𝐶 ∈ ω → ( ∅ ∈ 𝐶 → ( 𝐴 ∈ 𝐵 ↔ ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) ) ) ) ) |
| 11 | 10 | imp4b | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( ( 𝐶 ∈ ω ∧ ∅ ∈ 𝐶 ) → ( 𝐴 ∈ 𝐵 ↔ ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) ) ) |
| 12 | 6 11 | biimtrid | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐶 ∈ N → ( 𝐴 ∈ 𝐵 ↔ ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) ) ) |
| 13 | 4 5 12 | syl2an | ⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( 𝐶 ∈ N → ( 𝐴 ∈ 𝐵 ↔ ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) ) ) |
| 14 | 13 | imp | ⊢ ( ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) ∧ 𝐶 ∈ N ) → ( 𝐴 ∈ 𝐵 ↔ ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) ) |
| 15 | ltpiord | ⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( 𝐴 <N 𝐵 ↔ 𝐴 ∈ 𝐵 ) ) | |
| 16 | 15 | adantr | ⊢ ( ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) ∧ 𝐶 ∈ N ) → ( 𝐴 <N 𝐵 ↔ 𝐴 ∈ 𝐵 ) ) |
| 17 | mulclpi | ⊢ ( ( 𝐶 ∈ N ∧ 𝐴 ∈ N ) → ( 𝐶 ·N 𝐴 ) ∈ N ) | |
| 18 | mulclpi | ⊢ ( ( 𝐶 ∈ N ∧ 𝐵 ∈ N ) → ( 𝐶 ·N 𝐵 ) ∈ N ) | |
| 19 | ltpiord | ⊢ ( ( ( 𝐶 ·N 𝐴 ) ∈ N ∧ ( 𝐶 ·N 𝐵 ) ∈ N ) → ( ( 𝐶 ·N 𝐴 ) <N ( 𝐶 ·N 𝐵 ) ↔ ( 𝐶 ·N 𝐴 ) ∈ ( 𝐶 ·N 𝐵 ) ) ) | |
| 20 | 17 18 19 | syl2an | ⊢ ( ( ( 𝐶 ∈ N ∧ 𝐴 ∈ N ) ∧ ( 𝐶 ∈ N ∧ 𝐵 ∈ N ) ) → ( ( 𝐶 ·N 𝐴 ) <N ( 𝐶 ·N 𝐵 ) ↔ ( 𝐶 ·N 𝐴 ) ∈ ( 𝐶 ·N 𝐵 ) ) ) |
| 21 | mulpiord | ⊢ ( ( 𝐶 ∈ N ∧ 𝐴 ∈ N ) → ( 𝐶 ·N 𝐴 ) = ( 𝐶 ·o 𝐴 ) ) | |
| 22 | 21 | adantr | ⊢ ( ( ( 𝐶 ∈ N ∧ 𝐴 ∈ N ) ∧ ( 𝐶 ∈ N ∧ 𝐵 ∈ N ) ) → ( 𝐶 ·N 𝐴 ) = ( 𝐶 ·o 𝐴 ) ) |
| 23 | mulpiord | ⊢ ( ( 𝐶 ∈ N ∧ 𝐵 ∈ N ) → ( 𝐶 ·N 𝐵 ) = ( 𝐶 ·o 𝐵 ) ) | |
| 24 | 23 | adantl | ⊢ ( ( ( 𝐶 ∈ N ∧ 𝐴 ∈ N ) ∧ ( 𝐶 ∈ N ∧ 𝐵 ∈ N ) ) → ( 𝐶 ·N 𝐵 ) = ( 𝐶 ·o 𝐵 ) ) |
| 25 | 22 24 | eleq12d | ⊢ ( ( ( 𝐶 ∈ N ∧ 𝐴 ∈ N ) ∧ ( 𝐶 ∈ N ∧ 𝐵 ∈ N ) ) → ( ( 𝐶 ·N 𝐴 ) ∈ ( 𝐶 ·N 𝐵 ) ↔ ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) ) |
| 26 | 20 25 | bitrd | ⊢ ( ( ( 𝐶 ∈ N ∧ 𝐴 ∈ N ) ∧ ( 𝐶 ∈ N ∧ 𝐵 ∈ N ) ) → ( ( 𝐶 ·N 𝐴 ) <N ( 𝐶 ·N 𝐵 ) ↔ ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) ) |
| 27 | 26 | anandis | ⊢ ( ( 𝐶 ∈ N ∧ ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) ) → ( ( 𝐶 ·N 𝐴 ) <N ( 𝐶 ·N 𝐵 ) ↔ ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) ) |
| 28 | 27 | ancoms | ⊢ ( ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) ∧ 𝐶 ∈ N ) → ( ( 𝐶 ·N 𝐴 ) <N ( 𝐶 ·N 𝐵 ) ↔ ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) ) |
| 29 | 14 16 28 | 3bitr4d | ⊢ ( ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) ∧ 𝐶 ∈ N ) → ( 𝐴 <N 𝐵 ↔ ( 𝐶 ·N 𝐴 ) <N ( 𝐶 ·N 𝐵 ) ) ) |
| 30 | 29 | 3impa | ⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N ) → ( 𝐴 <N 𝐵 ↔ ( 𝐶 ·N 𝐴 ) <N ( 𝐶 ·N 𝐵 ) ) ) |
| 31 | 1 2 3 30 | ndmovord | ⊢ ( 𝐶 ∈ N → ( 𝐴 <N 𝐵 ↔ ( 𝐶 ·N 𝐴 ) <N ( 𝐶 ·N 𝐵 ) ) ) |