This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the dividend of a division is less than the difference between a real number and the divisor, the floor function of the division plus 1 is less than the division of the real number by the divisor. (Contributed by Alexander van der Vekens, 14-Apr-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ltdifltdiv | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 < ( 𝐶 − 𝐵 ) → ( ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) + 1 ) < ( 𝐶 / 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | refldivcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ∈ ℝ ) | |
| 2 | peano2re | ⊢ ( ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ∈ ℝ → ( ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) + 1 ) ∈ ℝ ) | |
| 3 | 1 2 | syl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) + 1 ) ∈ ℝ ) |
| 4 | 3 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ ) → ( ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) + 1 ) ∈ ℝ ) |
| 5 | 4 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ ) ∧ 𝐴 < ( 𝐶 − 𝐵 ) ) → ( ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) + 1 ) ∈ ℝ ) |
| 6 | rerpdivcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐴 / 𝐵 ) ∈ ℝ ) | |
| 7 | peano2re | ⊢ ( ( 𝐴 / 𝐵 ) ∈ ℝ → ( ( 𝐴 / 𝐵 ) + 1 ) ∈ ℝ ) | |
| 8 | 6 7 | syl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( 𝐴 / 𝐵 ) + 1 ) ∈ ℝ ) |
| 9 | 8 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 / 𝐵 ) + 1 ) ∈ ℝ ) |
| 10 | 9 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ ) ∧ 𝐴 < ( 𝐶 − 𝐵 ) ) → ( ( 𝐴 / 𝐵 ) + 1 ) ∈ ℝ ) |
| 11 | rerpdivcl | ⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐶 / 𝐵 ) ∈ ℝ ) | |
| 12 | 11 | ancoms | ⊢ ( ( 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ ) → ( 𝐶 / 𝐵 ) ∈ ℝ ) |
| 13 | 12 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ ) → ( 𝐶 / 𝐵 ) ∈ ℝ ) |
| 14 | 13 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ ) ∧ 𝐴 < ( 𝐶 − 𝐵 ) ) → ( 𝐶 / 𝐵 ) ∈ ℝ ) |
| 15 | 1 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ ) → ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ∈ ℝ ) |
| 16 | 15 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ ) ∧ 𝐴 < ( 𝐶 − 𝐵 ) ) → ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ∈ ℝ ) |
| 17 | 6 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 / 𝐵 ) ∈ ℝ ) |
| 18 | 17 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ ) ∧ 𝐴 < ( 𝐶 − 𝐵 ) ) → ( 𝐴 / 𝐵 ) ∈ ℝ ) |
| 19 | 1red | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ ) ∧ 𝐴 < ( 𝐶 − 𝐵 ) ) → 1 ∈ ℝ ) | |
| 20 | 3simpa | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) ) | |
| 21 | 20 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ ) ∧ 𝐴 < ( 𝐶 − 𝐵 ) ) → ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) ) |
| 22 | fldivle | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ≤ ( 𝐴 / 𝐵 ) ) | |
| 23 | 21 22 | syl | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ ) ∧ 𝐴 < ( 𝐶 − 𝐵 ) ) → ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ≤ ( 𝐴 / 𝐵 ) ) |
| 24 | 16 18 19 23 | leadd1dd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ ) ∧ 𝐴 < ( 𝐶 − 𝐵 ) ) → ( ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) + 1 ) ≤ ( ( 𝐴 / 𝐵 ) + 1 ) ) |
| 25 | rpre | ⊢ ( 𝐵 ∈ ℝ+ → 𝐵 ∈ ℝ ) | |
| 26 | ltaddsub | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 + 𝐵 ) < 𝐶 ↔ 𝐴 < ( 𝐶 − 𝐵 ) ) ) | |
| 27 | 25 26 | syl3an2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 + 𝐵 ) < 𝐶 ↔ 𝐴 < ( 𝐶 − 𝐵 ) ) ) |
| 28 | 27 | biimpar | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ ) ∧ 𝐴 < ( 𝐶 − 𝐵 ) ) → ( 𝐴 + 𝐵 ) < 𝐶 ) |
| 29 | recn | ⊢ ( ( 𝐴 / 𝐵 ) ∈ ℝ → ( 𝐴 / 𝐵 ) ∈ ℂ ) | |
| 30 | 6 29 | syl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐴 / 𝐵 ) ∈ ℂ ) |
| 31 | 30 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 / 𝐵 ) ∈ ℂ ) |
| 32 | rpcn | ⊢ ( 𝐵 ∈ ℝ+ → 𝐵 ∈ ℂ ) | |
| 33 | 32 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ ) → 𝐵 ∈ ℂ ) |
| 34 | 1cnd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ ) → 1 ∈ ℂ ) | |
| 35 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 36 | 35 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ ) → 𝐴 ∈ ℂ ) |
| 37 | rpne0 | ⊢ ( 𝐵 ∈ ℝ+ → 𝐵 ≠ 0 ) | |
| 38 | 37 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ ) → 𝐵 ≠ 0 ) |
| 39 | 36 33 38 | divcan1d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 / 𝐵 ) · 𝐵 ) = 𝐴 ) |
| 40 | 32 | mullidd | ⊢ ( 𝐵 ∈ ℝ+ → ( 1 · 𝐵 ) = 𝐵 ) |
| 41 | 40 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ ) → ( 1 · 𝐵 ) = 𝐵 ) |
| 42 | 39 41 | oveq12d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ ) → ( ( ( 𝐴 / 𝐵 ) · 𝐵 ) + ( 1 · 𝐵 ) ) = ( 𝐴 + 𝐵 ) ) |
| 43 | 31 33 34 42 | joinlmuladdmuld | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ ) → ( ( ( 𝐴 / 𝐵 ) + 1 ) · 𝐵 ) = ( 𝐴 + 𝐵 ) ) |
| 44 | recn | ⊢ ( 𝐶 ∈ ℝ → 𝐶 ∈ ℂ ) | |
| 45 | 44 | 3ad2ant3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ ) → 𝐶 ∈ ℂ ) |
| 46 | 45 33 38 | divcan1d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐶 / 𝐵 ) · 𝐵 ) = 𝐶 ) |
| 47 | 43 46 | breq12d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ ) → ( ( ( ( 𝐴 / 𝐵 ) + 1 ) · 𝐵 ) < ( ( 𝐶 / 𝐵 ) · 𝐵 ) ↔ ( 𝐴 + 𝐵 ) < 𝐶 ) ) |
| 48 | 47 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ ) ∧ 𝐴 < ( 𝐶 − 𝐵 ) ) → ( ( ( ( 𝐴 / 𝐵 ) + 1 ) · 𝐵 ) < ( ( 𝐶 / 𝐵 ) · 𝐵 ) ↔ ( 𝐴 + 𝐵 ) < 𝐶 ) ) |
| 49 | 28 48 | mpbird | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ ) ∧ 𝐴 < ( 𝐶 − 𝐵 ) ) → ( ( ( 𝐴 / 𝐵 ) + 1 ) · 𝐵 ) < ( ( 𝐶 / 𝐵 ) · 𝐵 ) ) |
| 50 | 17 7 | syl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 / 𝐵 ) + 1 ) ∈ ℝ ) |
| 51 | simp2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ ) → 𝐵 ∈ ℝ+ ) | |
| 52 | 50 13 51 | ltmul1d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ ) → ( ( ( 𝐴 / 𝐵 ) + 1 ) < ( 𝐶 / 𝐵 ) ↔ ( ( ( 𝐴 / 𝐵 ) + 1 ) · 𝐵 ) < ( ( 𝐶 / 𝐵 ) · 𝐵 ) ) ) |
| 53 | 52 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ ) ∧ 𝐴 < ( 𝐶 − 𝐵 ) ) → ( ( ( 𝐴 / 𝐵 ) + 1 ) < ( 𝐶 / 𝐵 ) ↔ ( ( ( 𝐴 / 𝐵 ) + 1 ) · 𝐵 ) < ( ( 𝐶 / 𝐵 ) · 𝐵 ) ) ) |
| 54 | 49 53 | mpbird | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ ) ∧ 𝐴 < ( 𝐶 − 𝐵 ) ) → ( ( 𝐴 / 𝐵 ) + 1 ) < ( 𝐶 / 𝐵 ) ) |
| 55 | 5 10 14 24 54 | lelttrd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ ) ∧ 𝐴 < ( 𝐶 − 𝐵 ) ) → ( ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) + 1 ) < ( 𝐶 / 𝐵 ) ) |
| 56 | 55 | ex | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 < ( 𝐶 − 𝐵 ) → ( ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) + 1 ) < ( 𝐶 / 𝐵 ) ) ) |