This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the dividend of a division is less than the difference between a real number and the divisor, the floor function of the division plus 1 is less than the division of the real number by the divisor. (Contributed by Alexander van der Vekens, 14-Apr-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ltdifltdiv | |- ( ( A e. RR /\ B e. RR+ /\ C e. RR ) -> ( A < ( C - B ) -> ( ( |_ ` ( A / B ) ) + 1 ) < ( C / B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | refldivcl | |- ( ( A e. RR /\ B e. RR+ ) -> ( |_ ` ( A / B ) ) e. RR ) |
|
| 2 | peano2re | |- ( ( |_ ` ( A / B ) ) e. RR -> ( ( |_ ` ( A / B ) ) + 1 ) e. RR ) |
|
| 3 | 1 2 | syl | |- ( ( A e. RR /\ B e. RR+ ) -> ( ( |_ ` ( A / B ) ) + 1 ) e. RR ) |
| 4 | 3 | 3adant3 | |- ( ( A e. RR /\ B e. RR+ /\ C e. RR ) -> ( ( |_ ` ( A / B ) ) + 1 ) e. RR ) |
| 5 | 4 | adantr | |- ( ( ( A e. RR /\ B e. RR+ /\ C e. RR ) /\ A < ( C - B ) ) -> ( ( |_ ` ( A / B ) ) + 1 ) e. RR ) |
| 6 | rerpdivcl | |- ( ( A e. RR /\ B e. RR+ ) -> ( A / B ) e. RR ) |
|
| 7 | peano2re | |- ( ( A / B ) e. RR -> ( ( A / B ) + 1 ) e. RR ) |
|
| 8 | 6 7 | syl | |- ( ( A e. RR /\ B e. RR+ ) -> ( ( A / B ) + 1 ) e. RR ) |
| 9 | 8 | 3adant3 | |- ( ( A e. RR /\ B e. RR+ /\ C e. RR ) -> ( ( A / B ) + 1 ) e. RR ) |
| 10 | 9 | adantr | |- ( ( ( A e. RR /\ B e. RR+ /\ C e. RR ) /\ A < ( C - B ) ) -> ( ( A / B ) + 1 ) e. RR ) |
| 11 | rerpdivcl | |- ( ( C e. RR /\ B e. RR+ ) -> ( C / B ) e. RR ) |
|
| 12 | 11 | ancoms | |- ( ( B e. RR+ /\ C e. RR ) -> ( C / B ) e. RR ) |
| 13 | 12 | 3adant1 | |- ( ( A e. RR /\ B e. RR+ /\ C e. RR ) -> ( C / B ) e. RR ) |
| 14 | 13 | adantr | |- ( ( ( A e. RR /\ B e. RR+ /\ C e. RR ) /\ A < ( C - B ) ) -> ( C / B ) e. RR ) |
| 15 | 1 | 3adant3 | |- ( ( A e. RR /\ B e. RR+ /\ C e. RR ) -> ( |_ ` ( A / B ) ) e. RR ) |
| 16 | 15 | adantr | |- ( ( ( A e. RR /\ B e. RR+ /\ C e. RR ) /\ A < ( C - B ) ) -> ( |_ ` ( A / B ) ) e. RR ) |
| 17 | 6 | 3adant3 | |- ( ( A e. RR /\ B e. RR+ /\ C e. RR ) -> ( A / B ) e. RR ) |
| 18 | 17 | adantr | |- ( ( ( A e. RR /\ B e. RR+ /\ C e. RR ) /\ A < ( C - B ) ) -> ( A / B ) e. RR ) |
| 19 | 1red | |- ( ( ( A e. RR /\ B e. RR+ /\ C e. RR ) /\ A < ( C - B ) ) -> 1 e. RR ) |
|
| 20 | 3simpa | |- ( ( A e. RR /\ B e. RR+ /\ C e. RR ) -> ( A e. RR /\ B e. RR+ ) ) |
|
| 21 | 20 | adantr | |- ( ( ( A e. RR /\ B e. RR+ /\ C e. RR ) /\ A < ( C - B ) ) -> ( A e. RR /\ B e. RR+ ) ) |
| 22 | fldivle | |- ( ( A e. RR /\ B e. RR+ ) -> ( |_ ` ( A / B ) ) <_ ( A / B ) ) |
|
| 23 | 21 22 | syl | |- ( ( ( A e. RR /\ B e. RR+ /\ C e. RR ) /\ A < ( C - B ) ) -> ( |_ ` ( A / B ) ) <_ ( A / B ) ) |
| 24 | 16 18 19 23 | leadd1dd | |- ( ( ( A e. RR /\ B e. RR+ /\ C e. RR ) /\ A < ( C - B ) ) -> ( ( |_ ` ( A / B ) ) + 1 ) <_ ( ( A / B ) + 1 ) ) |
| 25 | rpre | |- ( B e. RR+ -> B e. RR ) |
|
| 26 | ltaddsub | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A + B ) < C <-> A < ( C - B ) ) ) |
|
| 27 | 25 26 | syl3an2 | |- ( ( A e. RR /\ B e. RR+ /\ C e. RR ) -> ( ( A + B ) < C <-> A < ( C - B ) ) ) |
| 28 | 27 | biimpar | |- ( ( ( A e. RR /\ B e. RR+ /\ C e. RR ) /\ A < ( C - B ) ) -> ( A + B ) < C ) |
| 29 | recn | |- ( ( A / B ) e. RR -> ( A / B ) e. CC ) |
|
| 30 | 6 29 | syl | |- ( ( A e. RR /\ B e. RR+ ) -> ( A / B ) e. CC ) |
| 31 | 30 | 3adant3 | |- ( ( A e. RR /\ B e. RR+ /\ C e. RR ) -> ( A / B ) e. CC ) |
| 32 | rpcn | |- ( B e. RR+ -> B e. CC ) |
|
| 33 | 32 | 3ad2ant2 | |- ( ( A e. RR /\ B e. RR+ /\ C e. RR ) -> B e. CC ) |
| 34 | 1cnd | |- ( ( A e. RR /\ B e. RR+ /\ C e. RR ) -> 1 e. CC ) |
|
| 35 | recn | |- ( A e. RR -> A e. CC ) |
|
| 36 | 35 | 3ad2ant1 | |- ( ( A e. RR /\ B e. RR+ /\ C e. RR ) -> A e. CC ) |
| 37 | rpne0 | |- ( B e. RR+ -> B =/= 0 ) |
|
| 38 | 37 | 3ad2ant2 | |- ( ( A e. RR /\ B e. RR+ /\ C e. RR ) -> B =/= 0 ) |
| 39 | 36 33 38 | divcan1d | |- ( ( A e. RR /\ B e. RR+ /\ C e. RR ) -> ( ( A / B ) x. B ) = A ) |
| 40 | 32 | mullidd | |- ( B e. RR+ -> ( 1 x. B ) = B ) |
| 41 | 40 | 3ad2ant2 | |- ( ( A e. RR /\ B e. RR+ /\ C e. RR ) -> ( 1 x. B ) = B ) |
| 42 | 39 41 | oveq12d | |- ( ( A e. RR /\ B e. RR+ /\ C e. RR ) -> ( ( ( A / B ) x. B ) + ( 1 x. B ) ) = ( A + B ) ) |
| 43 | 31 33 34 42 | joinlmuladdmuld | |- ( ( A e. RR /\ B e. RR+ /\ C e. RR ) -> ( ( ( A / B ) + 1 ) x. B ) = ( A + B ) ) |
| 44 | recn | |- ( C e. RR -> C e. CC ) |
|
| 45 | 44 | 3ad2ant3 | |- ( ( A e. RR /\ B e. RR+ /\ C e. RR ) -> C e. CC ) |
| 46 | 45 33 38 | divcan1d | |- ( ( A e. RR /\ B e. RR+ /\ C e. RR ) -> ( ( C / B ) x. B ) = C ) |
| 47 | 43 46 | breq12d | |- ( ( A e. RR /\ B e. RR+ /\ C e. RR ) -> ( ( ( ( A / B ) + 1 ) x. B ) < ( ( C / B ) x. B ) <-> ( A + B ) < C ) ) |
| 48 | 47 | adantr | |- ( ( ( A e. RR /\ B e. RR+ /\ C e. RR ) /\ A < ( C - B ) ) -> ( ( ( ( A / B ) + 1 ) x. B ) < ( ( C / B ) x. B ) <-> ( A + B ) < C ) ) |
| 49 | 28 48 | mpbird | |- ( ( ( A e. RR /\ B e. RR+ /\ C e. RR ) /\ A < ( C - B ) ) -> ( ( ( A / B ) + 1 ) x. B ) < ( ( C / B ) x. B ) ) |
| 50 | 17 7 | syl | |- ( ( A e. RR /\ B e. RR+ /\ C e. RR ) -> ( ( A / B ) + 1 ) e. RR ) |
| 51 | simp2 | |- ( ( A e. RR /\ B e. RR+ /\ C e. RR ) -> B e. RR+ ) |
|
| 52 | 50 13 51 | ltmul1d | |- ( ( A e. RR /\ B e. RR+ /\ C e. RR ) -> ( ( ( A / B ) + 1 ) < ( C / B ) <-> ( ( ( A / B ) + 1 ) x. B ) < ( ( C / B ) x. B ) ) ) |
| 53 | 52 | adantr | |- ( ( ( A e. RR /\ B e. RR+ /\ C e. RR ) /\ A < ( C - B ) ) -> ( ( ( A / B ) + 1 ) < ( C / B ) <-> ( ( ( A / B ) + 1 ) x. B ) < ( ( C / B ) x. B ) ) ) |
| 54 | 49 53 | mpbird | |- ( ( ( A e. RR /\ B e. RR+ /\ C e. RR ) /\ A < ( C - B ) ) -> ( ( A / B ) + 1 ) < ( C / B ) ) |
| 55 | 5 10 14 24 54 | lelttrd | |- ( ( ( A e. RR /\ B e. RR+ /\ C e. RR ) /\ A < ( C - B ) ) -> ( ( |_ ` ( A / B ) ) + 1 ) < ( C / B ) ) |
| 56 | 55 | ex | |- ( ( A e. RR /\ B e. RR+ /\ C e. RR ) -> ( A < ( C - B ) -> ( ( |_ ` ( A / B ) ) + 1 ) < ( C / B ) ) ) |