This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define a well-order on the set of all finite bags from the index set i given a wellordering r of i . (Contributed by Mario Carneiro, 8-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-ltbag | ⊢ <bag = ( 𝑟 ∈ V , 𝑖 ∈ V ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∧ ∃ 𝑧 ∈ 𝑖 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑖 ( 𝑧 𝑟 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cltb | ⊢ <bag | |
| 1 | vr | ⊢ 𝑟 | |
| 2 | cvv | ⊢ V | |
| 3 | vi | ⊢ 𝑖 | |
| 4 | vx | ⊢ 𝑥 | |
| 5 | vy | ⊢ 𝑦 | |
| 6 | 4 | cv | ⊢ 𝑥 |
| 7 | 5 | cv | ⊢ 𝑦 |
| 8 | 6 7 | cpr | ⊢ { 𝑥 , 𝑦 } |
| 9 | vh | ⊢ ℎ | |
| 10 | cn0 | ⊢ ℕ0 | |
| 11 | cmap | ⊢ ↑m | |
| 12 | 3 | cv | ⊢ 𝑖 |
| 13 | 10 12 11 | co | ⊢ ( ℕ0 ↑m 𝑖 ) |
| 14 | 9 | cv | ⊢ ℎ |
| 15 | 14 | ccnv | ⊢ ◡ ℎ |
| 16 | cn | ⊢ ℕ | |
| 17 | 15 16 | cima | ⊢ ( ◡ ℎ “ ℕ ) |
| 18 | cfn | ⊢ Fin | |
| 19 | 17 18 | wcel | ⊢ ( ◡ ℎ “ ℕ ) ∈ Fin |
| 20 | 19 9 13 | crab | ⊢ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
| 21 | 8 20 | wss | ⊢ { 𝑥 , 𝑦 } ⊆ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
| 22 | vz | ⊢ 𝑧 | |
| 23 | 22 | cv | ⊢ 𝑧 |
| 24 | 23 6 | cfv | ⊢ ( 𝑥 ‘ 𝑧 ) |
| 25 | clt | ⊢ < | |
| 26 | 23 7 | cfv | ⊢ ( 𝑦 ‘ 𝑧 ) |
| 27 | 24 26 25 | wbr | ⊢ ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) |
| 28 | vw | ⊢ 𝑤 | |
| 29 | 1 | cv | ⊢ 𝑟 |
| 30 | 28 | cv | ⊢ 𝑤 |
| 31 | 23 30 29 | wbr | ⊢ 𝑧 𝑟 𝑤 |
| 32 | 30 6 | cfv | ⊢ ( 𝑥 ‘ 𝑤 ) |
| 33 | 30 7 | cfv | ⊢ ( 𝑦 ‘ 𝑤 ) |
| 34 | 32 33 | wceq | ⊢ ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) |
| 35 | 31 34 | wi | ⊢ ( 𝑧 𝑟 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) |
| 36 | 35 28 12 | wral | ⊢ ∀ 𝑤 ∈ 𝑖 ( 𝑧 𝑟 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) |
| 37 | 27 36 | wa | ⊢ ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑖 ( 𝑧 𝑟 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) |
| 38 | 37 22 12 | wrex | ⊢ ∃ 𝑧 ∈ 𝑖 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑖 ( 𝑧 𝑟 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) |
| 39 | 21 38 | wa | ⊢ ( { 𝑥 , 𝑦 } ⊆ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∧ ∃ 𝑧 ∈ 𝑖 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑖 ( 𝑧 𝑟 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) |
| 40 | 39 4 5 | copab | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∧ ∃ 𝑧 ∈ 𝑖 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑖 ( 𝑧 𝑟 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) } |
| 41 | 1 3 2 2 40 | cmpo | ⊢ ( 𝑟 ∈ V , 𝑖 ∈ V ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∧ ∃ 𝑧 ∈ 𝑖 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑖 ( 𝑧 𝑟 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) } ) |
| 42 | 0 41 | wceq | ⊢ <bag = ( 𝑟 ∈ V , 𝑖 ∈ V ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∧ ∃ 𝑧 ∈ 𝑖 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑖 ( 𝑧 𝑟 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) } ) |