This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for lt2msq . (Contributed by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lt2msq1 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝐴 · 𝐴 ) < ( 𝐵 · 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1l | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → 𝐴 ∈ ℝ ) | |
| 2 | 1 1 | remulcld | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝐴 · 𝐴 ) ∈ ℝ ) |
| 3 | simp2 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → 𝐵 ∈ ℝ ) | |
| 4 | 3 1 | remulcld | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝐵 · 𝐴 ) ∈ ℝ ) |
| 5 | 3 3 | remulcld | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝐵 · 𝐵 ) ∈ ℝ ) |
| 6 | simp1 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) | |
| 7 | simp3 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → 𝐴 < 𝐵 ) | |
| 8 | 1 3 7 | ltled | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → 𝐴 ≤ 𝐵 ) |
| 9 | lemul1a | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) ∧ 𝐴 ≤ 𝐵 ) → ( 𝐴 · 𝐴 ) ≤ ( 𝐵 · 𝐴 ) ) | |
| 10 | 1 3 6 8 9 | syl31anc | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝐴 · 𝐴 ) ≤ ( 𝐵 · 𝐴 ) ) |
| 11 | 0red | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → 0 ∈ ℝ ) | |
| 12 | simp1r | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → 0 ≤ 𝐴 ) | |
| 13 | 11 1 3 12 7 | lelttrd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → 0 < 𝐵 ) |
| 14 | ltmul2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( 𝐴 < 𝐵 ↔ ( 𝐵 · 𝐴 ) < ( 𝐵 · 𝐵 ) ) ) | |
| 15 | 1 3 3 13 14 | syl112anc | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝐴 < 𝐵 ↔ ( 𝐵 · 𝐴 ) < ( 𝐵 · 𝐵 ) ) ) |
| 16 | 7 15 | mpbid | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝐵 · 𝐴 ) < ( 𝐵 · 𝐵 ) ) |
| 17 | 2 4 5 10 16 | lelttrd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝐴 · 𝐴 ) < ( 𝐵 · 𝐵 ) ) |