This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two nonnegative numbers compare the same as their squares. (Contributed by Roy F. Longton, 8-Aug-2005) (Revised by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lt2msq | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( 𝐴 < 𝐵 ↔ ( 𝐴 · 𝐴 ) < ( 𝐵 · 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lt2msq1 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝐴 · 𝐴 ) < ( 𝐵 · 𝐵 ) ) | |
| 2 | 1 | 3expia | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 → ( 𝐴 · 𝐴 ) < ( 𝐵 · 𝐵 ) ) ) |
| 3 | 2 | adantrr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( 𝐴 < 𝐵 → ( 𝐴 · 𝐴 ) < ( 𝐵 · 𝐵 ) ) ) |
| 4 | id | ⊢ ( 𝐴 = 𝐵 → 𝐴 = 𝐵 ) | |
| 5 | 4 4 | oveq12d | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 · 𝐴 ) = ( 𝐵 · 𝐵 ) ) |
| 6 | 5 | a1i | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( 𝐴 = 𝐵 → ( 𝐴 · 𝐴 ) = ( 𝐵 · 𝐵 ) ) ) |
| 7 | lt2msq1 | ⊢ ( ( ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐴 ∈ ℝ ∧ 𝐵 < 𝐴 ) → ( 𝐵 · 𝐵 ) < ( 𝐴 · 𝐴 ) ) | |
| 8 | 7 | 3expia | ⊢ ( ( ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐴 ∈ ℝ ) → ( 𝐵 < 𝐴 → ( 𝐵 · 𝐵 ) < ( 𝐴 · 𝐴 ) ) ) |
| 9 | 8 | adantrr | ⊢ ( ( ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) → ( 𝐵 < 𝐴 → ( 𝐵 · 𝐵 ) < ( 𝐴 · 𝐴 ) ) ) |
| 10 | 9 | ancoms | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( 𝐵 < 𝐴 → ( 𝐵 · 𝐵 ) < ( 𝐴 · 𝐴 ) ) ) |
| 11 | 6 10 | orim12d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( ( 𝐴 = 𝐵 ∨ 𝐵 < 𝐴 ) → ( ( 𝐴 · 𝐴 ) = ( 𝐵 · 𝐵 ) ∨ ( 𝐵 · 𝐵 ) < ( 𝐴 · 𝐴 ) ) ) ) |
| 12 | 11 | con3d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( ¬ ( ( 𝐴 · 𝐴 ) = ( 𝐵 · 𝐵 ) ∨ ( 𝐵 · 𝐵 ) < ( 𝐴 · 𝐴 ) ) → ¬ ( 𝐴 = 𝐵 ∨ 𝐵 < 𝐴 ) ) ) |
| 13 | simpll | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → 𝐴 ∈ ℝ ) | |
| 14 | 13 13 | remulcld | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( 𝐴 · 𝐴 ) ∈ ℝ ) |
| 15 | simprl | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → 𝐵 ∈ ℝ ) | |
| 16 | 15 15 | remulcld | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( 𝐵 · 𝐵 ) ∈ ℝ ) |
| 17 | 14 16 | lttrid | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( ( 𝐴 · 𝐴 ) < ( 𝐵 · 𝐵 ) ↔ ¬ ( ( 𝐴 · 𝐴 ) = ( 𝐵 · 𝐵 ) ∨ ( 𝐵 · 𝐵 ) < ( 𝐴 · 𝐴 ) ) ) ) |
| 18 | 13 15 | lttrid | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( 𝐴 < 𝐵 ↔ ¬ ( 𝐴 = 𝐵 ∨ 𝐵 < 𝐴 ) ) ) |
| 19 | 12 17 18 | 3imtr4d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( ( 𝐴 · 𝐴 ) < ( 𝐵 · 𝐵 ) → 𝐴 < 𝐵 ) ) |
| 20 | 3 19 | impbid | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( 𝐴 < 𝐵 ↔ ( 𝐴 · 𝐴 ) < ( 𝐵 · 𝐵 ) ) ) |