This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for lt2msq . (Contributed by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lt2msq1 | |- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR /\ A < B ) -> ( A x. A ) < ( B x. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1l | |- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR /\ A < B ) -> A e. RR ) |
|
| 2 | 1 1 | remulcld | |- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR /\ A < B ) -> ( A x. A ) e. RR ) |
| 3 | simp2 | |- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR /\ A < B ) -> B e. RR ) |
|
| 4 | 3 1 | remulcld | |- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR /\ A < B ) -> ( B x. A ) e. RR ) |
| 5 | 3 3 | remulcld | |- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR /\ A < B ) -> ( B x. B ) e. RR ) |
| 6 | simp1 | |- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR /\ A < B ) -> ( A e. RR /\ 0 <_ A ) ) |
|
| 7 | simp3 | |- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR /\ A < B ) -> A < B ) |
|
| 8 | 1 3 7 | ltled | |- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR /\ A < B ) -> A <_ B ) |
| 9 | lemul1a | |- ( ( ( A e. RR /\ B e. RR /\ ( A e. RR /\ 0 <_ A ) ) /\ A <_ B ) -> ( A x. A ) <_ ( B x. A ) ) |
|
| 10 | 1 3 6 8 9 | syl31anc | |- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR /\ A < B ) -> ( A x. A ) <_ ( B x. A ) ) |
| 11 | 0red | |- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR /\ A < B ) -> 0 e. RR ) |
|
| 12 | simp1r | |- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR /\ A < B ) -> 0 <_ A ) |
|
| 13 | 11 1 3 12 7 | lelttrd | |- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR /\ A < B ) -> 0 < B ) |
| 14 | ltmul2 | |- ( ( A e. RR /\ B e. RR /\ ( B e. RR /\ 0 < B ) ) -> ( A < B <-> ( B x. A ) < ( B x. B ) ) ) |
|
| 15 | 1 3 3 13 14 | syl112anc | |- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR /\ A < B ) -> ( A < B <-> ( B x. A ) < ( B x. B ) ) ) |
| 16 | 7 15 | mpbid | |- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR /\ A < B ) -> ( B x. A ) < ( B x. B ) ) |
| 17 | 2 4 5 10 16 | lelttrd | |- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR /\ A < B ) -> ( A x. A ) < ( B x. B ) ) |