This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The last symbol of an empty word does not exist. (Contributed by Alexander van der Vekens, 19-Mar-2018) (Proof shortened by AV, 2-May-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lsw0 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 0 ) → ( lastS ‘ 𝑊 ) = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsw | ⊢ ( 𝑊 ∈ Word 𝑉 → ( lastS ‘ 𝑊 ) = ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 0 ) → ( lastS ‘ 𝑊 ) = ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) |
| 3 | fvoveq1 | ⊢ ( ( ♯ ‘ 𝑊 ) = 0 → ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 1 ) ) = ( 𝑊 ‘ ( 0 − 1 ) ) ) | |
| 4 | wrddm | ⊢ ( 𝑊 ∈ Word 𝑉 → dom 𝑊 = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | |
| 5 | 1nn | ⊢ 1 ∈ ℕ | |
| 6 | nnnle0 | ⊢ ( 1 ∈ ℕ → ¬ 1 ≤ 0 ) | |
| 7 | 5 6 | ax-mp | ⊢ ¬ 1 ≤ 0 |
| 8 | 0re | ⊢ 0 ∈ ℝ | |
| 9 | 1re | ⊢ 1 ∈ ℝ | |
| 10 | 8 9 | subge0i | ⊢ ( 0 ≤ ( 0 − 1 ) ↔ 1 ≤ 0 ) |
| 11 | 7 10 | mtbir | ⊢ ¬ 0 ≤ ( 0 − 1 ) |
| 12 | elfzole1 | ⊢ ( ( 0 − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → 0 ≤ ( 0 − 1 ) ) | |
| 13 | 11 12 | mto | ⊢ ¬ ( 0 − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) |
| 14 | eleq2 | ⊢ ( dom 𝑊 = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( ( 0 − 1 ) ∈ dom 𝑊 ↔ ( 0 − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) | |
| 15 | 13 14 | mtbiri | ⊢ ( dom 𝑊 = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ¬ ( 0 − 1 ) ∈ dom 𝑊 ) |
| 16 | ndmfv | ⊢ ( ¬ ( 0 − 1 ) ∈ dom 𝑊 → ( 𝑊 ‘ ( 0 − 1 ) ) = ∅ ) | |
| 17 | 4 15 16 | 3syl | ⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝑊 ‘ ( 0 − 1 ) ) = ∅ ) |
| 18 | 3 17 | sylan9eqr | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 0 ) → ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 1 ) ) = ∅ ) |
| 19 | 2 18 | eqtrd | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 0 ) → ( lastS ‘ 𝑊 ) = ∅ ) |