This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The last symbol of an empty word does not exist. (Contributed by Alexander van der Vekens, 19-Mar-2018) (Proof shortened by AV, 2-May-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lsw0 | |- ( ( W e. Word V /\ ( # ` W ) = 0 ) -> ( lastS ` W ) = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsw | |- ( W e. Word V -> ( lastS ` W ) = ( W ` ( ( # ` W ) - 1 ) ) ) |
|
| 2 | 1 | adantr | |- ( ( W e. Word V /\ ( # ` W ) = 0 ) -> ( lastS ` W ) = ( W ` ( ( # ` W ) - 1 ) ) ) |
| 3 | fvoveq1 | |- ( ( # ` W ) = 0 -> ( W ` ( ( # ` W ) - 1 ) ) = ( W ` ( 0 - 1 ) ) ) |
|
| 4 | wrddm | |- ( W e. Word V -> dom W = ( 0 ..^ ( # ` W ) ) ) |
|
| 5 | 1nn | |- 1 e. NN |
|
| 6 | nnnle0 | |- ( 1 e. NN -> -. 1 <_ 0 ) |
|
| 7 | 5 6 | ax-mp | |- -. 1 <_ 0 |
| 8 | 0re | |- 0 e. RR |
|
| 9 | 1re | |- 1 e. RR |
|
| 10 | 8 9 | subge0i | |- ( 0 <_ ( 0 - 1 ) <-> 1 <_ 0 ) |
| 11 | 7 10 | mtbir | |- -. 0 <_ ( 0 - 1 ) |
| 12 | elfzole1 | |- ( ( 0 - 1 ) e. ( 0 ..^ ( # ` W ) ) -> 0 <_ ( 0 - 1 ) ) |
|
| 13 | 11 12 | mto | |- -. ( 0 - 1 ) e. ( 0 ..^ ( # ` W ) ) |
| 14 | eleq2 | |- ( dom W = ( 0 ..^ ( # ` W ) ) -> ( ( 0 - 1 ) e. dom W <-> ( 0 - 1 ) e. ( 0 ..^ ( # ` W ) ) ) ) |
|
| 15 | 13 14 | mtbiri | |- ( dom W = ( 0 ..^ ( # ` W ) ) -> -. ( 0 - 1 ) e. dom W ) |
| 16 | ndmfv | |- ( -. ( 0 - 1 ) e. dom W -> ( W ` ( 0 - 1 ) ) = (/) ) |
|
| 17 | 4 15 16 | 3syl | |- ( W e. Word V -> ( W ` ( 0 - 1 ) ) = (/) ) |
| 18 | 3 17 | sylan9eqr | |- ( ( W e. Word V /\ ( # ` W ) = 0 ) -> ( W ` ( ( # ` W ) - 1 ) ) = (/) ) |
| 19 | 2 18 | eqtrd | |- ( ( W e. Word V /\ ( # ` W ) = 0 ) -> ( lastS ` W ) = (/) ) |