This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The span of a union with the zero subspace. (Contributed by NM, 22-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspun0.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lspun0.o | ⊢ 0 = ( 0g ‘ 𝑊 ) | ||
| lspun0.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | ||
| lspun0.w | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | ||
| lspun0.x | ⊢ ( 𝜑 → 𝑋 ⊆ 𝑉 ) | ||
| Assertion | lspun0 | ⊢ ( 𝜑 → ( 𝑁 ‘ ( 𝑋 ∪ { 0 } ) ) = ( 𝑁 ‘ 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspun0.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lspun0.o | ⊢ 0 = ( 0g ‘ 𝑊 ) | |
| 3 | lspun0.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | |
| 4 | lspun0.w | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | |
| 5 | lspun0.x | ⊢ ( 𝜑 → 𝑋 ⊆ 𝑉 ) | |
| 6 | 1 2 | lmod0vcl | ⊢ ( 𝑊 ∈ LMod → 0 ∈ 𝑉 ) |
| 7 | 4 6 | syl | ⊢ ( 𝜑 → 0 ∈ 𝑉 ) |
| 8 | 7 | snssd | ⊢ ( 𝜑 → { 0 } ⊆ 𝑉 ) |
| 9 | 1 3 | lspun | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ⊆ 𝑉 ∧ { 0 } ⊆ 𝑉 ) → ( 𝑁 ‘ ( 𝑋 ∪ { 0 } ) ) = ( 𝑁 ‘ ( ( 𝑁 ‘ 𝑋 ) ∪ ( 𝑁 ‘ { 0 } ) ) ) ) |
| 10 | 4 5 8 9 | syl3anc | ⊢ ( 𝜑 → ( 𝑁 ‘ ( 𝑋 ∪ { 0 } ) ) = ( 𝑁 ‘ ( ( 𝑁 ‘ 𝑋 ) ∪ ( 𝑁 ‘ { 0 } ) ) ) ) |
| 11 | 2 3 | lspsn0 | ⊢ ( 𝑊 ∈ LMod → ( 𝑁 ‘ { 0 } ) = { 0 } ) |
| 12 | 4 11 | syl | ⊢ ( 𝜑 → ( 𝑁 ‘ { 0 } ) = { 0 } ) |
| 13 | 12 | uneq2d | ⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝑋 ) ∪ ( 𝑁 ‘ { 0 } ) ) = ( ( 𝑁 ‘ 𝑋 ) ∪ { 0 } ) ) |
| 14 | eqid | ⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) | |
| 15 | 1 14 3 | lspcl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ⊆ 𝑉 ) → ( 𝑁 ‘ 𝑋 ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 16 | 4 5 15 | syl2anc | ⊢ ( 𝜑 → ( 𝑁 ‘ 𝑋 ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 17 | 2 14 | lss0ss | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑁 ‘ 𝑋 ) ∈ ( LSubSp ‘ 𝑊 ) ) → { 0 } ⊆ ( 𝑁 ‘ 𝑋 ) ) |
| 18 | 4 16 17 | syl2anc | ⊢ ( 𝜑 → { 0 } ⊆ ( 𝑁 ‘ 𝑋 ) ) |
| 19 | ssequn2 | ⊢ ( { 0 } ⊆ ( 𝑁 ‘ 𝑋 ) ↔ ( ( 𝑁 ‘ 𝑋 ) ∪ { 0 } ) = ( 𝑁 ‘ 𝑋 ) ) | |
| 20 | 18 19 | sylib | ⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝑋 ) ∪ { 0 } ) = ( 𝑁 ‘ 𝑋 ) ) |
| 21 | 13 20 | eqtrd | ⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝑋 ) ∪ ( 𝑁 ‘ { 0 } ) ) = ( 𝑁 ‘ 𝑋 ) ) |
| 22 | 21 | fveq2d | ⊢ ( 𝜑 → ( 𝑁 ‘ ( ( 𝑁 ‘ 𝑋 ) ∪ ( 𝑁 ‘ { 0 } ) ) ) = ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) ) ) |
| 23 | 1 3 | lspidm | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ⊆ 𝑉 ) → ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) ) = ( 𝑁 ‘ 𝑋 ) ) |
| 24 | 4 5 23 | syl2anc | ⊢ ( 𝜑 → ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) ) = ( 𝑁 ‘ 𝑋 ) ) |
| 25 | 22 24 | eqtrd | ⊢ ( 𝜑 → ( 𝑁 ‘ ( ( 𝑁 ‘ 𝑋 ) ∪ ( 𝑁 ‘ { 0 } ) ) ) = ( 𝑁 ‘ 𝑋 ) ) |
| 26 | 10 25 | eqtrd | ⊢ ( 𝜑 → ( 𝑁 ‘ ( 𝑋 ∪ { 0 } ) ) = ( 𝑁 ‘ 𝑋 ) ) |