This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The span of a union with the zero subspace. (Contributed by NM, 22-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspun0.v | |- V = ( Base ` W ) |
|
| lspun0.o | |- .0. = ( 0g ` W ) |
||
| lspun0.n | |- N = ( LSpan ` W ) |
||
| lspun0.w | |- ( ph -> W e. LMod ) |
||
| lspun0.x | |- ( ph -> X C_ V ) |
||
| Assertion | lspun0 | |- ( ph -> ( N ` ( X u. { .0. } ) ) = ( N ` X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspun0.v | |- V = ( Base ` W ) |
|
| 2 | lspun0.o | |- .0. = ( 0g ` W ) |
|
| 3 | lspun0.n | |- N = ( LSpan ` W ) |
|
| 4 | lspun0.w | |- ( ph -> W e. LMod ) |
|
| 5 | lspun0.x | |- ( ph -> X C_ V ) |
|
| 6 | 1 2 | lmod0vcl | |- ( W e. LMod -> .0. e. V ) |
| 7 | 4 6 | syl | |- ( ph -> .0. e. V ) |
| 8 | 7 | snssd | |- ( ph -> { .0. } C_ V ) |
| 9 | 1 3 | lspun | |- ( ( W e. LMod /\ X C_ V /\ { .0. } C_ V ) -> ( N ` ( X u. { .0. } ) ) = ( N ` ( ( N ` X ) u. ( N ` { .0. } ) ) ) ) |
| 10 | 4 5 8 9 | syl3anc | |- ( ph -> ( N ` ( X u. { .0. } ) ) = ( N ` ( ( N ` X ) u. ( N ` { .0. } ) ) ) ) |
| 11 | 2 3 | lspsn0 | |- ( W e. LMod -> ( N ` { .0. } ) = { .0. } ) |
| 12 | 4 11 | syl | |- ( ph -> ( N ` { .0. } ) = { .0. } ) |
| 13 | 12 | uneq2d | |- ( ph -> ( ( N ` X ) u. ( N ` { .0. } ) ) = ( ( N ` X ) u. { .0. } ) ) |
| 14 | eqid | |- ( LSubSp ` W ) = ( LSubSp ` W ) |
|
| 15 | 1 14 3 | lspcl | |- ( ( W e. LMod /\ X C_ V ) -> ( N ` X ) e. ( LSubSp ` W ) ) |
| 16 | 4 5 15 | syl2anc | |- ( ph -> ( N ` X ) e. ( LSubSp ` W ) ) |
| 17 | 2 14 | lss0ss | |- ( ( W e. LMod /\ ( N ` X ) e. ( LSubSp ` W ) ) -> { .0. } C_ ( N ` X ) ) |
| 18 | 4 16 17 | syl2anc | |- ( ph -> { .0. } C_ ( N ` X ) ) |
| 19 | ssequn2 | |- ( { .0. } C_ ( N ` X ) <-> ( ( N ` X ) u. { .0. } ) = ( N ` X ) ) |
|
| 20 | 18 19 | sylib | |- ( ph -> ( ( N ` X ) u. { .0. } ) = ( N ` X ) ) |
| 21 | 13 20 | eqtrd | |- ( ph -> ( ( N ` X ) u. ( N ` { .0. } ) ) = ( N ` X ) ) |
| 22 | 21 | fveq2d | |- ( ph -> ( N ` ( ( N ` X ) u. ( N ` { .0. } ) ) ) = ( N ` ( N ` X ) ) ) |
| 23 | 1 3 | lspidm | |- ( ( W e. LMod /\ X C_ V ) -> ( N ` ( N ` X ) ) = ( N ` X ) ) |
| 24 | 4 5 23 | syl2anc | |- ( ph -> ( N ` ( N ` X ) ) = ( N ` X ) ) |
| 25 | 22 24 | eqtrd | |- ( ph -> ( N ` ( ( N ` X ) u. ( N ` { .0. } ) ) ) = ( N ` X ) ) |
| 26 | 10 25 | eqtrd | |- ( ph -> ( N ` ( X u. { .0. } ) ) = ( N ` X ) ) |