This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Span of the singleton is the zero subspace iff the vector is zero. (Contributed by NM, 27-Apr-2014) (Revised by Mario Carneiro, 19-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspsneq0.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lspsneq0.z | ⊢ 0 = ( 0g ‘ 𝑊 ) | ||
| lspsneq0.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | ||
| Assertion | lspsneq0 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝑁 ‘ { 𝑋 } ) = { 0 } ↔ 𝑋 = 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspsneq0.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lspsneq0.z | ⊢ 0 = ( 0g ‘ 𝑊 ) | |
| 3 | lspsneq0.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | |
| 4 | 1 3 | lspsnid | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → 𝑋 ∈ ( 𝑁 ‘ { 𝑋 } ) ) |
| 5 | eleq2 | ⊢ ( ( 𝑁 ‘ { 𝑋 } ) = { 0 } → ( 𝑋 ∈ ( 𝑁 ‘ { 𝑋 } ) ↔ 𝑋 ∈ { 0 } ) ) | |
| 6 | 4 5 | syl5ibcom | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝑁 ‘ { 𝑋 } ) = { 0 } → 𝑋 ∈ { 0 } ) ) |
| 7 | elsni | ⊢ ( 𝑋 ∈ { 0 } → 𝑋 = 0 ) | |
| 8 | 6 7 | syl6 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝑁 ‘ { 𝑋 } ) = { 0 } → 𝑋 = 0 ) ) |
| 9 | 2 3 | lspsn0 | ⊢ ( 𝑊 ∈ LMod → ( 𝑁 ‘ { 0 } ) = { 0 } ) |
| 10 | 9 | adantr | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ { 0 } ) = { 0 } ) |
| 11 | sneq | ⊢ ( 𝑋 = 0 → { 𝑋 } = { 0 } ) | |
| 12 | 11 | fveqeq2d | ⊢ ( 𝑋 = 0 → ( ( 𝑁 ‘ { 𝑋 } ) = { 0 } ↔ ( 𝑁 ‘ { 0 } ) = { 0 } ) ) |
| 13 | 10 12 | syl5ibrcom | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑋 = 0 → ( 𝑁 ‘ { 𝑋 } ) = { 0 } ) ) |
| 14 | 8 13 | impbid | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝑁 ‘ { 𝑋 } ) = { 0 } ↔ 𝑋 = 0 ) ) |