This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Triangle-type inequality for span of a singleton of vector difference. (Contributed by NM, 25-Apr-2014) (Revised by Mario Carneiro, 21-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspsntrim.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lspsntrim.s | ⊢ − = ( -g ‘ 𝑊 ) | ||
| lspsntrim.p | ⊢ ⊕ = ( LSSum ‘ 𝑊 ) | ||
| lspsntrim.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | ||
| Assertion | lspsntrim | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ⊆ ( ( 𝑁 ‘ { 𝑋 } ) ⊕ ( 𝑁 ‘ { 𝑌 } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspsntrim.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lspsntrim.s | ⊢ − = ( -g ‘ 𝑊 ) | |
| 3 | lspsntrim.p | ⊢ ⊕ = ( LSSum ‘ 𝑊 ) | |
| 4 | lspsntrim.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | |
| 5 | eqid | ⊢ ( invg ‘ 𝑊 ) = ( invg ‘ 𝑊 ) | |
| 6 | 1 5 | lmodvnegcl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉 ) → ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ∈ 𝑉 ) |
| 7 | 6 | 3adant2 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ∈ 𝑉 ) |
| 8 | eqid | ⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) | |
| 9 | 1 8 4 3 | lspsntri | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ∈ 𝑉 ) → ( 𝑁 ‘ { ( 𝑋 ( +g ‘ 𝑊 ) ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ) } ) ⊆ ( ( 𝑁 ‘ { 𝑋 } ) ⊕ ( 𝑁 ‘ { ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) } ) ) ) |
| 10 | 7 9 | syld3an3 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ { ( 𝑋 ( +g ‘ 𝑊 ) ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ) } ) ⊆ ( ( 𝑁 ‘ { 𝑋 } ) ⊕ ( 𝑁 ‘ { ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) } ) ) ) |
| 11 | 1 8 5 2 | grpsubval | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑋 − 𝑌 ) = ( 𝑋 ( +g ‘ 𝑊 ) ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ) ) |
| 12 | 11 | sneqd | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → { ( 𝑋 − 𝑌 ) } = { ( 𝑋 ( +g ‘ 𝑊 ) ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ) } ) |
| 13 | 12 | fveq2d | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) = ( 𝑁 ‘ { ( 𝑋 ( +g ‘ 𝑊 ) ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ) } ) ) |
| 14 | 13 | 3adant1 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) = ( 𝑁 ‘ { ( 𝑋 ( +g ‘ 𝑊 ) ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ) } ) ) |
| 15 | 1 5 4 | lspsnneg | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ { ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) } ) = ( 𝑁 ‘ { 𝑌 } ) ) |
| 16 | 15 | 3adant2 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ { ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) } ) = ( 𝑁 ‘ { 𝑌 } ) ) |
| 17 | 16 | eqcomd | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑌 } ) = ( 𝑁 ‘ { ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) } ) ) |
| 18 | 17 | oveq2d | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( ( 𝑁 ‘ { 𝑋 } ) ⊕ ( 𝑁 ‘ { 𝑌 } ) ) = ( ( 𝑁 ‘ { 𝑋 } ) ⊕ ( 𝑁 ‘ { ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) } ) ) ) |
| 19 | 10 14 18 | 3sstr4d | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ⊆ ( ( 𝑁 ‘ { 𝑋 } ) ⊕ ( 𝑁 ‘ { 𝑌 } ) ) ) |