This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Triangle-type inequality for span of a singleton. (Contributed by NM, 24-Feb-2014) (Revised by Mario Carneiro, 21-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspsntri.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lspsntri.a | ⊢ + = ( +g ‘ 𝑊 ) | ||
| lspsntri.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | ||
| lspsntri.p | ⊢ ⊕ = ( LSSum ‘ 𝑊 ) | ||
| Assertion | lspsntri | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ⊆ ( ( 𝑁 ‘ { 𝑋 } ) ⊕ ( 𝑁 ‘ { 𝑌 } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspsntri.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lspsntri.a | ⊢ + = ( +g ‘ 𝑊 ) | |
| 3 | lspsntri.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | |
| 4 | lspsntri.p | ⊢ ⊕ = ( LSSum ‘ 𝑊 ) | |
| 5 | 1 2 3 | lspvadd | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ⊆ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |
| 6 | df-pr | ⊢ { 𝑋 , 𝑌 } = ( { 𝑋 } ∪ { 𝑌 } ) | |
| 7 | 6 | fveq2i | ⊢ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) = ( 𝑁 ‘ ( { 𝑋 } ∪ { 𝑌 } ) ) |
| 8 | 5 7 | sseqtrdi | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ⊆ ( 𝑁 ‘ ( { 𝑋 } ∪ { 𝑌 } ) ) ) |
| 9 | simp1 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → 𝑊 ∈ LMod ) | |
| 10 | simp2 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → 𝑋 ∈ 𝑉 ) | |
| 11 | 10 | snssd | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → { 𝑋 } ⊆ 𝑉 ) |
| 12 | simp3 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → 𝑌 ∈ 𝑉 ) | |
| 13 | 12 | snssd | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → { 𝑌 } ⊆ 𝑉 ) |
| 14 | 1 3 4 | lsmsp2 | ⊢ ( ( 𝑊 ∈ LMod ∧ { 𝑋 } ⊆ 𝑉 ∧ { 𝑌 } ⊆ 𝑉 ) → ( ( 𝑁 ‘ { 𝑋 } ) ⊕ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝑁 ‘ ( { 𝑋 } ∪ { 𝑌 } ) ) ) |
| 15 | 9 11 13 14 | syl3anc | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( ( 𝑁 ‘ { 𝑋 } ) ⊕ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝑁 ‘ ( { 𝑋 } ∪ { 𝑌 } ) ) ) |
| 16 | 8 15 | sseqtrrd | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ⊆ ( ( 𝑁 ‘ { 𝑋 } ) ⊕ ( 𝑁 ‘ { 𝑌 } ) ) ) |