This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Triangle-type inequality for span of a singleton of vector difference. (Contributed by NM, 25-Apr-2014) (Revised by Mario Carneiro, 21-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspsntrim.v | |- V = ( Base ` W ) |
|
| lspsntrim.s | |- .- = ( -g ` W ) |
||
| lspsntrim.p | |- .(+) = ( LSSum ` W ) |
||
| lspsntrim.n | |- N = ( LSpan ` W ) |
||
| Assertion | lspsntrim | |- ( ( W e. LMod /\ X e. V /\ Y e. V ) -> ( N ` { ( X .- Y ) } ) C_ ( ( N ` { X } ) .(+) ( N ` { Y } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspsntrim.v | |- V = ( Base ` W ) |
|
| 2 | lspsntrim.s | |- .- = ( -g ` W ) |
|
| 3 | lspsntrim.p | |- .(+) = ( LSSum ` W ) |
|
| 4 | lspsntrim.n | |- N = ( LSpan ` W ) |
|
| 5 | eqid | |- ( invg ` W ) = ( invg ` W ) |
|
| 6 | 1 5 | lmodvnegcl | |- ( ( W e. LMod /\ Y e. V ) -> ( ( invg ` W ) ` Y ) e. V ) |
| 7 | 6 | 3adant2 | |- ( ( W e. LMod /\ X e. V /\ Y e. V ) -> ( ( invg ` W ) ` Y ) e. V ) |
| 8 | eqid | |- ( +g ` W ) = ( +g ` W ) |
|
| 9 | 1 8 4 3 | lspsntri | |- ( ( W e. LMod /\ X e. V /\ ( ( invg ` W ) ` Y ) e. V ) -> ( N ` { ( X ( +g ` W ) ( ( invg ` W ) ` Y ) ) } ) C_ ( ( N ` { X } ) .(+) ( N ` { ( ( invg ` W ) ` Y ) } ) ) ) |
| 10 | 7 9 | syld3an3 | |- ( ( W e. LMod /\ X e. V /\ Y e. V ) -> ( N ` { ( X ( +g ` W ) ( ( invg ` W ) ` Y ) ) } ) C_ ( ( N ` { X } ) .(+) ( N ` { ( ( invg ` W ) ` Y ) } ) ) ) |
| 11 | 1 8 5 2 | grpsubval | |- ( ( X e. V /\ Y e. V ) -> ( X .- Y ) = ( X ( +g ` W ) ( ( invg ` W ) ` Y ) ) ) |
| 12 | 11 | sneqd | |- ( ( X e. V /\ Y e. V ) -> { ( X .- Y ) } = { ( X ( +g ` W ) ( ( invg ` W ) ` Y ) ) } ) |
| 13 | 12 | fveq2d | |- ( ( X e. V /\ Y e. V ) -> ( N ` { ( X .- Y ) } ) = ( N ` { ( X ( +g ` W ) ( ( invg ` W ) ` Y ) ) } ) ) |
| 14 | 13 | 3adant1 | |- ( ( W e. LMod /\ X e. V /\ Y e. V ) -> ( N ` { ( X .- Y ) } ) = ( N ` { ( X ( +g ` W ) ( ( invg ` W ) ` Y ) ) } ) ) |
| 15 | 1 5 4 | lspsnneg | |- ( ( W e. LMod /\ Y e. V ) -> ( N ` { ( ( invg ` W ) ` Y ) } ) = ( N ` { Y } ) ) |
| 16 | 15 | 3adant2 | |- ( ( W e. LMod /\ X e. V /\ Y e. V ) -> ( N ` { ( ( invg ` W ) ` Y ) } ) = ( N ` { Y } ) ) |
| 17 | 16 | eqcomd | |- ( ( W e. LMod /\ X e. V /\ Y e. V ) -> ( N ` { Y } ) = ( N ` { ( ( invg ` W ) ` Y ) } ) ) |
| 18 | 17 | oveq2d | |- ( ( W e. LMod /\ X e. V /\ Y e. V ) -> ( ( N ` { X } ) .(+) ( N ` { Y } ) ) = ( ( N ` { X } ) .(+) ( N ` { ( ( invg ` W ) ` Y ) } ) ) ) |
| 19 | 10 14 18 | 3sstr4d | |- ( ( W e. LMod /\ X e. V /\ Y e. V ) -> ( N ` { ( X .- Y ) } ) C_ ( ( N ` { X } ) .(+) ( N ` { Y } ) ) ) |