This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to say that a vector belongs to the span of a pair of vectors. (Contributed by NM, 14-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lsmelpr.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lsmelpr.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | ||
| lsmelpr.p | ⊢ ⊕ = ( LSSum ‘ 𝑊 ) | ||
| lsmelpr.w | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | ||
| lsmelpr.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | ||
| lsmelpr.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | ||
| lsmelpr.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝑉 ) | ||
| Assertion | lsmelpr | ⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ↔ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( ( 𝑁 ‘ { 𝑌 } ) ⊕ ( 𝑁 ‘ { 𝑍 } ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmelpr.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lsmelpr.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | |
| 3 | lsmelpr.p | ⊢ ⊕ = ( LSSum ‘ 𝑊 ) | |
| 4 | lsmelpr.w | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | |
| 5 | lsmelpr.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | |
| 6 | lsmelpr.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | |
| 7 | lsmelpr.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝑉 ) | |
| 8 | eqid | ⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) | |
| 9 | 1 8 2 4 6 7 | lspprcl | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 10 | 1 8 2 4 9 5 | ellspsn5b | ⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ↔ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) ) |
| 11 | 1 2 3 4 6 7 | lsmpr | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 , 𝑍 } ) = ( ( 𝑁 ‘ { 𝑌 } ) ⊕ ( 𝑁 ‘ { 𝑍 } ) ) ) |
| 12 | 11 | sseq2d | ⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ↔ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( ( 𝑁 ‘ { 𝑌 } ) ⊕ ( 𝑁 ‘ { 𝑍 } ) ) ) ) |
| 13 | 10 12 | bitrd | ⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ↔ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( ( 𝑁 ‘ { 𝑌 } ) ⊕ ( 𝑁 ‘ { 𝑍 } ) ) ) ) |