This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for lspprat . Show that if X and Y are both in ( N{ x , y } ) (which will be our goal for each of the two cases above), then ( N{ X , Y } ) C_ U , contradicting the hypothesis for U . (Contributed by NM, 29-Aug-2014) (Revised by Mario Carneiro, 5-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspprat.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lspprat.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | ||
| lspprat.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | ||
| lspprat.w | ⊢ ( 𝜑 → 𝑊 ∈ LVec ) | ||
| lspprat.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) | ||
| lspprat.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | ||
| lspprat.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | ||
| lspprat.p | ⊢ ( 𝜑 → 𝑈 ⊊ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) | ||
| lsppratlem1.o | ⊢ 0 = ( 0g ‘ 𝑊 ) | ||
| lsppratlem1.x2 | ⊢ ( 𝜑 → 𝑥 ∈ ( 𝑈 ∖ { 0 } ) ) | ||
| lsppratlem1.y2 | ⊢ ( 𝜑 → 𝑦 ∈ ( 𝑈 ∖ ( 𝑁 ‘ { 𝑥 } ) ) ) | ||
| lsppratlem2.x1 | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝑁 ‘ { 𝑥 , 𝑦 } ) ) | ||
| lsppratlem2.y1 | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝑁 ‘ { 𝑥 , 𝑦 } ) ) | ||
| Assertion | lsppratlem2 | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ⊆ 𝑈 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspprat.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lspprat.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | |
| 3 | lspprat.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | |
| 4 | lspprat.w | ⊢ ( 𝜑 → 𝑊 ∈ LVec ) | |
| 5 | lspprat.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) | |
| 6 | lspprat.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | |
| 7 | lspprat.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | |
| 8 | lspprat.p | ⊢ ( 𝜑 → 𝑈 ⊊ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) | |
| 9 | lsppratlem1.o | ⊢ 0 = ( 0g ‘ 𝑊 ) | |
| 10 | lsppratlem1.x2 | ⊢ ( 𝜑 → 𝑥 ∈ ( 𝑈 ∖ { 0 } ) ) | |
| 11 | lsppratlem1.y2 | ⊢ ( 𝜑 → 𝑦 ∈ ( 𝑈 ∖ ( 𝑁 ‘ { 𝑥 } ) ) ) | |
| 12 | lsppratlem2.x1 | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝑁 ‘ { 𝑥 , 𝑦 } ) ) | |
| 13 | lsppratlem2.y1 | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝑁 ‘ { 𝑥 , 𝑦 } ) ) | |
| 14 | lveclmod | ⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) | |
| 15 | 4 14 | syl | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 16 | 10 | eldifad | ⊢ ( 𝜑 → 𝑥 ∈ 𝑈 ) |
| 17 | 11 | eldifad | ⊢ ( 𝜑 → 𝑦 ∈ 𝑈 ) |
| 18 | 16 17 | prssd | ⊢ ( 𝜑 → { 𝑥 , 𝑦 } ⊆ 𝑈 ) |
| 19 | 1 2 | lssss | ⊢ ( 𝑈 ∈ 𝑆 → 𝑈 ⊆ 𝑉 ) |
| 20 | 5 19 | syl | ⊢ ( 𝜑 → 𝑈 ⊆ 𝑉 ) |
| 21 | 18 20 | sstrd | ⊢ ( 𝜑 → { 𝑥 , 𝑦 } ⊆ 𝑉 ) |
| 22 | 1 2 3 | lspcl | ⊢ ( ( 𝑊 ∈ LMod ∧ { 𝑥 , 𝑦 } ⊆ 𝑉 ) → ( 𝑁 ‘ { 𝑥 , 𝑦 } ) ∈ 𝑆 ) |
| 23 | 15 21 22 | syl2anc | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑥 , 𝑦 } ) ∈ 𝑆 ) |
| 24 | 2 3 15 23 12 13 | lspprss | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ⊆ ( 𝑁 ‘ { 𝑥 , 𝑦 } ) ) |
| 25 | 2 3 15 5 16 17 | lspprss | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑥 , 𝑦 } ) ⊆ 𝑈 ) |
| 26 | 24 25 | sstrd | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ⊆ 𝑈 ) |