This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for lspprat . Negating the assumption on y , we arrive close to the desired conclusion. (Contributed by NM, 29-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspprat.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lspprat.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | ||
| lspprat.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | ||
| lspprat.w | ⊢ ( 𝜑 → 𝑊 ∈ LVec ) | ||
| lspprat.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) | ||
| lspprat.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | ||
| lspprat.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | ||
| lspprat.p | ⊢ ( 𝜑 → 𝑈 ⊊ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) | ||
| lsppratlem6.o | ⊢ 0 = ( 0g ‘ 𝑊 ) | ||
| Assertion | lsppratlem6 | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑈 ∖ { 0 } ) → 𝑈 = ( 𝑁 ‘ { 𝑥 } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspprat.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lspprat.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | |
| 3 | lspprat.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | |
| 4 | lspprat.w | ⊢ ( 𝜑 → 𝑊 ∈ LVec ) | |
| 5 | lspprat.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) | |
| 6 | lspprat.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | |
| 7 | lspprat.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | |
| 8 | lspprat.p | ⊢ ( 𝜑 → 𝑈 ⊊ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) | |
| 9 | lsppratlem6.o | ⊢ 0 = ( 0g ‘ 𝑊 ) | |
| 10 | 8 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑈 ∖ { 0 } ) ) → 𝑈 ⊊ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |
| 11 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑈 ∖ { 0 } ) ∧ 𝑦 ∈ ( 𝑈 ∖ ( 𝑁 ‘ { 𝑥 } ) ) ) ) → 𝑊 ∈ LVec ) |
| 12 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑈 ∖ { 0 } ) ∧ 𝑦 ∈ ( 𝑈 ∖ ( 𝑁 ‘ { 𝑥 } ) ) ) ) → 𝑈 ∈ 𝑆 ) |
| 13 | 6 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑈 ∖ { 0 } ) ∧ 𝑦 ∈ ( 𝑈 ∖ ( 𝑁 ‘ { 𝑥 } ) ) ) ) → 𝑋 ∈ 𝑉 ) |
| 14 | 7 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑈 ∖ { 0 } ) ∧ 𝑦 ∈ ( 𝑈 ∖ ( 𝑁 ‘ { 𝑥 } ) ) ) ) → 𝑌 ∈ 𝑉 ) |
| 15 | 8 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑈 ∖ { 0 } ) ∧ 𝑦 ∈ ( 𝑈 ∖ ( 𝑁 ‘ { 𝑥 } ) ) ) ) → 𝑈 ⊊ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |
| 16 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑈 ∖ { 0 } ) ∧ 𝑦 ∈ ( 𝑈 ∖ ( 𝑁 ‘ { 𝑥 } ) ) ) ) → 𝑥 ∈ ( 𝑈 ∖ { 0 } ) ) | |
| 17 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑈 ∖ { 0 } ) ∧ 𝑦 ∈ ( 𝑈 ∖ ( 𝑁 ‘ { 𝑥 } ) ) ) ) → 𝑦 ∈ ( 𝑈 ∖ ( 𝑁 ‘ { 𝑥 } ) ) ) | |
| 18 | 1 2 3 11 12 13 14 15 9 16 17 | lsppratlem5 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑈 ∖ { 0 } ) ∧ 𝑦 ∈ ( 𝑈 ∖ ( 𝑁 ‘ { 𝑥 } ) ) ) ) → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ⊆ 𝑈 ) |
| 19 | ssnpss | ⊢ ( ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ⊆ 𝑈 → ¬ 𝑈 ⊊ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) | |
| 20 | 18 19 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑈 ∖ { 0 } ) ∧ 𝑦 ∈ ( 𝑈 ∖ ( 𝑁 ‘ { 𝑥 } ) ) ) ) → ¬ 𝑈 ⊊ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |
| 21 | 20 | expr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑈 ∖ { 0 } ) ) → ( 𝑦 ∈ ( 𝑈 ∖ ( 𝑁 ‘ { 𝑥 } ) ) → ¬ 𝑈 ⊊ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ) |
| 22 | 10 21 | mt2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑈 ∖ { 0 } ) ) → ¬ 𝑦 ∈ ( 𝑈 ∖ ( 𝑁 ‘ { 𝑥 } ) ) ) |
| 23 | 22 | eq0rdv | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑈 ∖ { 0 } ) ) → ( 𝑈 ∖ ( 𝑁 ‘ { 𝑥 } ) ) = ∅ ) |
| 24 | ssdif0 | ⊢ ( 𝑈 ⊆ ( 𝑁 ‘ { 𝑥 } ) ↔ ( 𝑈 ∖ ( 𝑁 ‘ { 𝑥 } ) ) = ∅ ) | |
| 25 | 23 24 | sylibr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑈 ∖ { 0 } ) ) → 𝑈 ⊆ ( 𝑁 ‘ { 𝑥 } ) ) |
| 26 | lveclmod | ⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) | |
| 27 | 4 26 | syl | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 28 | 27 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑈 ∖ { 0 } ) ) → 𝑊 ∈ LMod ) |
| 29 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑈 ∖ { 0 } ) ) → 𝑈 ∈ 𝑆 ) |
| 30 | eldifi | ⊢ ( 𝑥 ∈ ( 𝑈 ∖ { 0 } ) → 𝑥 ∈ 𝑈 ) | |
| 31 | 30 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑈 ∖ { 0 } ) ) → 𝑥 ∈ 𝑈 ) |
| 32 | 2 3 28 29 31 | ellspsn5 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑈 ∖ { 0 } ) ) → ( 𝑁 ‘ { 𝑥 } ) ⊆ 𝑈 ) |
| 33 | 25 32 | eqssd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑈 ∖ { 0 } ) ) → 𝑈 = ( 𝑁 ‘ { 𝑥 } ) ) |
| 34 | 33 | ex | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑈 ∖ { 0 } ) → 𝑈 = ( 𝑁 ‘ { 𝑥 } ) ) ) |