This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for lspprat . Show that if X and Y are both in ( N{ x , y } ) (which will be our goal for each of the two cases above), then ( N{ X , Y } ) C_ U , contradicting the hypothesis for U . (Contributed by NM, 29-Aug-2014) (Revised by Mario Carneiro, 5-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspprat.v | ||
| lspprat.s | |||
| lspprat.n | |||
| lspprat.w | |||
| lspprat.u | |||
| lspprat.x | |||
| lspprat.y | |||
| lspprat.p | |||
| lsppratlem1.o | |||
| lsppratlem1.x2 | |||
| lsppratlem1.y2 | |||
| lsppratlem2.x1 | |||
| lsppratlem2.y1 | |||
| Assertion | lsppratlem2 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspprat.v | ||
| 2 | lspprat.s | ||
| 3 | lspprat.n | ||
| 4 | lspprat.w | ||
| 5 | lspprat.u | ||
| 6 | lspprat.x | ||
| 7 | lspprat.y | ||
| 8 | lspprat.p | ||
| 9 | lsppratlem1.o | ||
| 10 | lsppratlem1.x2 | ||
| 11 | lsppratlem1.y2 | ||
| 12 | lsppratlem2.x1 | ||
| 13 | lsppratlem2.y1 | ||
| 14 | lveclmod | ||
| 15 | 4 14 | syl | |
| 16 | 10 | eldifad | |
| 17 | 11 | eldifad | |
| 18 | 16 17 | prssd | |
| 19 | 1 2 | lssss | |
| 20 | 5 19 | syl | |
| 21 | 18 20 | sstrd | |
| 22 | 1 2 3 | lspcl | |
| 23 | 15 21 22 | syl2anc | |
| 24 | 2 3 15 23 12 13 | lspprss | |
| 25 | 2 3 15 5 16 17 | lspprss | |
| 26 | 24 25 | sstrd |