This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Span of a pair of vectors. (Contributed by NM, 22-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lsppr.v | |- V = ( Base ` W ) |
|
| lsppr.a | |- .+ = ( +g ` W ) |
||
| lsppr.f | |- F = ( Scalar ` W ) |
||
| lsppr.k | |- K = ( Base ` F ) |
||
| lsppr.t | |- .x. = ( .s ` W ) |
||
| lsppr.n | |- N = ( LSpan ` W ) |
||
| lsppr.w | |- ( ph -> W e. LMod ) |
||
| lsppr.x | |- ( ph -> X e. V ) |
||
| lsppr.y | |- ( ph -> Y e. V ) |
||
| Assertion | lsppr | |- ( ph -> ( N ` { X , Y } ) = { v | E. k e. K E. l e. K v = ( ( k .x. X ) .+ ( l .x. Y ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsppr.v | |- V = ( Base ` W ) |
|
| 2 | lsppr.a | |- .+ = ( +g ` W ) |
|
| 3 | lsppr.f | |- F = ( Scalar ` W ) |
|
| 4 | lsppr.k | |- K = ( Base ` F ) |
|
| 5 | lsppr.t | |- .x. = ( .s ` W ) |
|
| 6 | lsppr.n | |- N = ( LSpan ` W ) |
|
| 7 | lsppr.w | |- ( ph -> W e. LMod ) |
|
| 8 | lsppr.x | |- ( ph -> X e. V ) |
|
| 9 | lsppr.y | |- ( ph -> Y e. V ) |
|
| 10 | df-pr | |- { X , Y } = ( { X } u. { Y } ) |
|
| 11 | 10 | fveq2i | |- ( N ` { X , Y } ) = ( N ` ( { X } u. { Y } ) ) |
| 12 | 8 | snssd | |- ( ph -> { X } C_ V ) |
| 13 | 9 | snssd | |- ( ph -> { Y } C_ V ) |
| 14 | 1 6 | lspun | |- ( ( W e. LMod /\ { X } C_ V /\ { Y } C_ V ) -> ( N ` ( { X } u. { Y } ) ) = ( N ` ( ( N ` { X } ) u. ( N ` { Y } ) ) ) ) |
| 15 | 7 12 13 14 | syl3anc | |- ( ph -> ( N ` ( { X } u. { Y } ) ) = ( N ` ( ( N ` { X } ) u. ( N ` { Y } ) ) ) ) |
| 16 | eqid | |- ( LSubSp ` W ) = ( LSubSp ` W ) |
|
| 17 | 1 16 6 | lspsncl | |- ( ( W e. LMod /\ X e. V ) -> ( N ` { X } ) e. ( LSubSp ` W ) ) |
| 18 | 7 8 17 | syl2anc | |- ( ph -> ( N ` { X } ) e. ( LSubSp ` W ) ) |
| 19 | 1 16 6 | lspsncl | |- ( ( W e. LMod /\ Y e. V ) -> ( N ` { Y } ) e. ( LSubSp ` W ) ) |
| 20 | 7 9 19 | syl2anc | |- ( ph -> ( N ` { Y } ) e. ( LSubSp ` W ) ) |
| 21 | eqid | |- ( LSSum ` W ) = ( LSSum ` W ) |
|
| 22 | 16 6 21 | lsmsp | |- ( ( W e. LMod /\ ( N ` { X } ) e. ( LSubSp ` W ) /\ ( N ` { Y } ) e. ( LSubSp ` W ) ) -> ( ( N ` { X } ) ( LSSum ` W ) ( N ` { Y } ) ) = ( N ` ( ( N ` { X } ) u. ( N ` { Y } ) ) ) ) |
| 23 | 7 18 20 22 | syl3anc | |- ( ph -> ( ( N ` { X } ) ( LSSum ` W ) ( N ` { Y } ) ) = ( N ` ( ( N ` { X } ) u. ( N ` { Y } ) ) ) ) |
| 24 | 1 2 3 4 5 21 6 7 8 9 | lsmspsn | |- ( ph -> ( v e. ( ( N ` { X } ) ( LSSum ` W ) ( N ` { Y } ) ) <-> E. k e. K E. l e. K v = ( ( k .x. X ) .+ ( l .x. Y ) ) ) ) |
| 25 | 24 | eqabdv | |- ( ph -> ( ( N ` { X } ) ( LSSum ` W ) ( N ` { Y } ) ) = { v | E. k e. K E. l e. K v = ( ( k .x. X ) .+ ( l .x. Y ) ) } ) |
| 26 | 15 23 25 | 3eqtr2d | |- ( ph -> ( N ` ( { X } u. { Y } ) ) = { v | E. k e. K E. l e. K v = ( ( k .x. X ) .+ ( l .x. Y ) ) } ) |
| 27 | 11 26 | eqtrid | |- ( ph -> ( N ` { X , Y } ) = { v | E. k e. K E. l e. K v = ( ( k .x. X ) .+ ( l .x. Y ) ) } ) |