This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define span of a set of vectors of a left module or left vector space. (Contributed by NM, 8-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-lsp | ⊢ LSpan = ( 𝑤 ∈ V ↦ ( 𝑠 ∈ 𝒫 ( Base ‘ 𝑤 ) ↦ ∩ { 𝑡 ∈ ( LSubSp ‘ 𝑤 ) ∣ 𝑠 ⊆ 𝑡 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | clspn | ⊢ LSpan | |
| 1 | vw | ⊢ 𝑤 | |
| 2 | cvv | ⊢ V | |
| 3 | vs | ⊢ 𝑠 | |
| 4 | cbs | ⊢ Base | |
| 5 | 1 | cv | ⊢ 𝑤 |
| 6 | 5 4 | cfv | ⊢ ( Base ‘ 𝑤 ) |
| 7 | 6 | cpw | ⊢ 𝒫 ( Base ‘ 𝑤 ) |
| 8 | vt | ⊢ 𝑡 | |
| 9 | clss | ⊢ LSubSp | |
| 10 | 5 9 | cfv | ⊢ ( LSubSp ‘ 𝑤 ) |
| 11 | 3 | cv | ⊢ 𝑠 |
| 12 | 8 | cv | ⊢ 𝑡 |
| 13 | 11 12 | wss | ⊢ 𝑠 ⊆ 𝑡 |
| 14 | 13 8 10 | crab | ⊢ { 𝑡 ∈ ( LSubSp ‘ 𝑤 ) ∣ 𝑠 ⊆ 𝑡 } |
| 15 | 14 | cint | ⊢ ∩ { 𝑡 ∈ ( LSubSp ‘ 𝑤 ) ∣ 𝑠 ⊆ 𝑡 } |
| 16 | 3 7 15 | cmpt | ⊢ ( 𝑠 ∈ 𝒫 ( Base ‘ 𝑤 ) ↦ ∩ { 𝑡 ∈ ( LSubSp ‘ 𝑤 ) ∣ 𝑠 ⊆ 𝑡 } ) |
| 17 | 1 2 16 | cmpt | ⊢ ( 𝑤 ∈ V ↦ ( 𝑠 ∈ 𝒫 ( Base ‘ 𝑤 ) ↦ ∩ { 𝑡 ∈ ( LSubSp ‘ 𝑤 ) ∣ 𝑠 ⊆ 𝑡 } ) ) |
| 18 | 0 17 | wceq | ⊢ LSpan = ( 𝑤 ∈ V ↦ ( 𝑠 ∈ 𝒫 ( Base ‘ 𝑤 ) ↦ ∩ { 𝑡 ∈ ( LSubSp ‘ 𝑤 ) ∣ 𝑠 ⊆ 𝑡 } ) ) |