This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The span function on a left module maps subsets to subspaces. (Contributed by Stefan O'Rear, 12-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspval.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lspval.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | ||
| lspval.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | ||
| Assertion | lspf | ⊢ ( 𝑊 ∈ LMod → 𝑁 : 𝒫 𝑉 ⟶ 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspval.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lspval.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | |
| 3 | lspval.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | |
| 4 | 1 2 3 | lspfval | ⊢ ( 𝑊 ∈ LMod → 𝑁 = ( 𝑠 ∈ 𝒫 𝑉 ↦ ∩ { 𝑝 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑝 } ) ) |
| 5 | simpl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑠 ∈ 𝒫 𝑉 ) → 𝑊 ∈ LMod ) | |
| 6 | ssrab2 | ⊢ { 𝑝 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑝 } ⊆ 𝑆 | |
| 7 | 6 | a1i | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑠 ∈ 𝒫 𝑉 ) → { 𝑝 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑝 } ⊆ 𝑆 ) |
| 8 | 1 2 | lss1 | ⊢ ( 𝑊 ∈ LMod → 𝑉 ∈ 𝑆 ) |
| 9 | elpwi | ⊢ ( 𝑠 ∈ 𝒫 𝑉 → 𝑠 ⊆ 𝑉 ) | |
| 10 | sseq2 | ⊢ ( 𝑝 = 𝑉 → ( 𝑠 ⊆ 𝑝 ↔ 𝑠 ⊆ 𝑉 ) ) | |
| 11 | 10 | rspcev | ⊢ ( ( 𝑉 ∈ 𝑆 ∧ 𝑠 ⊆ 𝑉 ) → ∃ 𝑝 ∈ 𝑆 𝑠 ⊆ 𝑝 ) |
| 12 | 8 9 11 | syl2an | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑠 ∈ 𝒫 𝑉 ) → ∃ 𝑝 ∈ 𝑆 𝑠 ⊆ 𝑝 ) |
| 13 | rabn0 | ⊢ ( { 𝑝 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑝 } ≠ ∅ ↔ ∃ 𝑝 ∈ 𝑆 𝑠 ⊆ 𝑝 ) | |
| 14 | 12 13 | sylibr | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑠 ∈ 𝒫 𝑉 ) → { 𝑝 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑝 } ≠ ∅ ) |
| 15 | 2 | lssintcl | ⊢ ( ( 𝑊 ∈ LMod ∧ { 𝑝 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑝 } ⊆ 𝑆 ∧ { 𝑝 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑝 } ≠ ∅ ) → ∩ { 𝑝 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑝 } ∈ 𝑆 ) |
| 16 | 5 7 14 15 | syl3anc | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑠 ∈ 𝒫 𝑉 ) → ∩ { 𝑝 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑝 } ∈ 𝑆 ) |
| 17 | 4 16 | fmpt3d | ⊢ ( 𝑊 ∈ LMod → 𝑁 : 𝒫 𝑉 ⟶ 𝑆 ) |