This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the linear span of a subset of Hilbert space. Definition of span in Schechter p. 276. See spanval for its value. (Contributed by NM, 2-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-span | ⊢ span = ( 𝑥 ∈ 𝒫 ℋ ↦ ∩ { 𝑦 ∈ Sℋ ∣ 𝑥 ⊆ 𝑦 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cspn | ⊢ span | |
| 1 | vx | ⊢ 𝑥 | |
| 2 | chba | ⊢ ℋ | |
| 3 | 2 | cpw | ⊢ 𝒫 ℋ |
| 4 | vy | ⊢ 𝑦 | |
| 5 | csh | ⊢ Sℋ | |
| 6 | 1 | cv | ⊢ 𝑥 |
| 7 | 4 | cv | ⊢ 𝑦 |
| 8 | 6 7 | wss | ⊢ 𝑥 ⊆ 𝑦 |
| 9 | 8 4 5 | crab | ⊢ { 𝑦 ∈ Sℋ ∣ 𝑥 ⊆ 𝑦 } |
| 10 | 9 | cint | ⊢ ∩ { 𝑦 ∈ Sℋ ∣ 𝑥 ⊆ 𝑦 } |
| 11 | 1 3 10 | cmpt | ⊢ ( 𝑥 ∈ 𝒫 ℋ ↦ ∩ { 𝑦 ∈ Sℋ ∣ 𝑥 ⊆ 𝑦 } ) |
| 12 | 0 11 | wceq | ⊢ span = ( 𝑥 ∈ 𝒫 ℋ ↦ ∩ { 𝑦 ∈ Sℋ ∣ 𝑥 ⊆ 𝑦 } ) |