This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The span function for a left vector space (or a left module). ( df-span analog.) (Contributed by NM, 8-Dec-2013) (Revised by Mario Carneiro, 19-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspval.v | |- V = ( Base ` W ) |
|
| lspval.s | |- S = ( LSubSp ` W ) |
||
| lspval.n | |- N = ( LSpan ` W ) |
||
| Assertion | lspfval | |- ( W e. X -> N = ( s e. ~P V |-> |^| { t e. S | s C_ t } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspval.v | |- V = ( Base ` W ) |
|
| 2 | lspval.s | |- S = ( LSubSp ` W ) |
|
| 3 | lspval.n | |- N = ( LSpan ` W ) |
|
| 4 | elex | |- ( W e. X -> W e. _V ) |
|
| 5 | fveq2 | |- ( w = W -> ( Base ` w ) = ( Base ` W ) ) |
|
| 6 | 5 1 | eqtr4di | |- ( w = W -> ( Base ` w ) = V ) |
| 7 | 6 | pweqd | |- ( w = W -> ~P ( Base ` w ) = ~P V ) |
| 8 | fveq2 | |- ( w = W -> ( LSubSp ` w ) = ( LSubSp ` W ) ) |
|
| 9 | 8 2 | eqtr4di | |- ( w = W -> ( LSubSp ` w ) = S ) |
| 10 | 9 | rabeqdv | |- ( w = W -> { t e. ( LSubSp ` w ) | s C_ t } = { t e. S | s C_ t } ) |
| 11 | 10 | inteqd | |- ( w = W -> |^| { t e. ( LSubSp ` w ) | s C_ t } = |^| { t e. S | s C_ t } ) |
| 12 | 7 11 | mpteq12dv | |- ( w = W -> ( s e. ~P ( Base ` w ) |-> |^| { t e. ( LSubSp ` w ) | s C_ t } ) = ( s e. ~P V |-> |^| { t e. S | s C_ t } ) ) |
| 13 | df-lsp | |- LSpan = ( w e. _V |-> ( s e. ~P ( Base ` w ) |-> |^| { t e. ( LSubSp ` w ) | s C_ t } ) ) |
|
| 14 | 1 | fvexi | |- V e. _V |
| 15 | 14 | pwex | |- ~P V e. _V |
| 16 | 15 | mptex | |- ( s e. ~P V |-> |^| { t e. S | s C_ t } ) e. _V |
| 17 | 12 13 16 | fvmpt | |- ( W e. _V -> ( LSpan ` W ) = ( s e. ~P V |-> |^| { t e. S | s C_ t } ) ) |
| 18 | 4 17 | syl | |- ( W e. X -> ( LSpan ` W ) = ( s e. ~P V |-> |^| { t e. S | s C_ t } ) ) |
| 19 | 3 18 | eqtrid | |- ( W e. X -> N = ( s e. ~P V |-> |^| { t e. S | s C_ t } ) ) |