This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Association of the disjointness constraint in a subgroup sum. (Contributed by Mario Carneiro, 22-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lsmcntz.p | |- .(+) = ( LSSum ` G ) |
|
| lsmcntz.s | |- ( ph -> S e. ( SubGrp ` G ) ) |
||
| lsmcntz.t | |- ( ph -> T e. ( SubGrp ` G ) ) |
||
| lsmcntz.u | |- ( ph -> U e. ( SubGrp ` G ) ) |
||
| lsmdisj.o | |- .0. = ( 0g ` G ) |
||
| lsmdisjr.i | |- ( ph -> ( S i^i ( T .(+) U ) ) = { .0. } ) |
||
| lsmdisj2r.i | |- ( ph -> ( T i^i U ) = { .0. } ) |
||
| Assertion | lsmdisj2r | |- ( ph -> ( ( S .(+) U ) i^i T ) = { .0. } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmcntz.p | |- .(+) = ( LSSum ` G ) |
|
| 2 | lsmcntz.s | |- ( ph -> S e. ( SubGrp ` G ) ) |
|
| 3 | lsmcntz.t | |- ( ph -> T e. ( SubGrp ` G ) ) |
|
| 4 | lsmcntz.u | |- ( ph -> U e. ( SubGrp ` G ) ) |
|
| 5 | lsmdisj.o | |- .0. = ( 0g ` G ) |
|
| 6 | lsmdisjr.i | |- ( ph -> ( S i^i ( T .(+) U ) ) = { .0. } ) |
|
| 7 | lsmdisj2r.i | |- ( ph -> ( T i^i U ) = { .0. } ) |
|
| 8 | eqid | |- ( oppG ` G ) = ( oppG ` G ) |
|
| 9 | 8 1 | oppglsm | |- ( U ( LSSum ` ( oppG ` G ) ) S ) = ( S .(+) U ) |
| 10 | 9 | ineq2i | |- ( T i^i ( U ( LSSum ` ( oppG ` G ) ) S ) ) = ( T i^i ( S .(+) U ) ) |
| 11 | incom | |- ( T i^i ( S .(+) U ) ) = ( ( S .(+) U ) i^i T ) |
|
| 12 | 10 11 | eqtri | |- ( T i^i ( U ( LSSum ` ( oppG ` G ) ) S ) ) = ( ( S .(+) U ) i^i T ) |
| 13 | eqid | |- ( LSSum ` ( oppG ` G ) ) = ( LSSum ` ( oppG ` G ) ) |
|
| 14 | 8 | oppgsubg | |- ( SubGrp ` G ) = ( SubGrp ` ( oppG ` G ) ) |
| 15 | 4 14 | eleqtrdi | |- ( ph -> U e. ( SubGrp ` ( oppG ` G ) ) ) |
| 16 | 3 14 | eleqtrdi | |- ( ph -> T e. ( SubGrp ` ( oppG ` G ) ) ) |
| 17 | 2 14 | eleqtrdi | |- ( ph -> S e. ( SubGrp ` ( oppG ` G ) ) ) |
| 18 | 8 5 | oppgid | |- .0. = ( 0g ` ( oppG ` G ) ) |
| 19 | 8 1 | oppglsm | |- ( U ( LSSum ` ( oppG ` G ) ) T ) = ( T .(+) U ) |
| 20 | 19 | ineq1i | |- ( ( U ( LSSum ` ( oppG ` G ) ) T ) i^i S ) = ( ( T .(+) U ) i^i S ) |
| 21 | incom | |- ( ( T .(+) U ) i^i S ) = ( S i^i ( T .(+) U ) ) |
|
| 22 | 20 21 | eqtri | |- ( ( U ( LSSum ` ( oppG ` G ) ) T ) i^i S ) = ( S i^i ( T .(+) U ) ) |
| 23 | 22 6 | eqtrid | |- ( ph -> ( ( U ( LSSum ` ( oppG ` G ) ) T ) i^i S ) = { .0. } ) |
| 24 | incom | |- ( T i^i U ) = ( U i^i T ) |
|
| 25 | 24 7 | eqtr3id | |- ( ph -> ( U i^i T ) = { .0. } ) |
| 26 | 13 15 16 17 18 23 25 | lsmdisj2 | |- ( ph -> ( T i^i ( U ( LSSum ` ( oppG ` G ) ) S ) ) = { .0. } ) |
| 27 | 12 26 | eqtr3id | |- ( ph -> ( ( S .(+) U ) i^i T ) = { .0. } ) |