This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Disjointness from a subgroup sum. (Contributed by Mario Carneiro, 21-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lsmcntz.p | |- .(+) = ( LSSum ` G ) |
|
| lsmcntz.s | |- ( ph -> S e. ( SubGrp ` G ) ) |
||
| lsmcntz.t | |- ( ph -> T e. ( SubGrp ` G ) ) |
||
| lsmcntz.u | |- ( ph -> U e. ( SubGrp ` G ) ) |
||
| lsmdisj.o | |- .0. = ( 0g ` G ) |
||
| lsmdisj.i | |- ( ph -> ( ( S .(+) T ) i^i U ) = { .0. } ) |
||
| Assertion | lsmdisj | |- ( ph -> ( ( S i^i U ) = { .0. } /\ ( T i^i U ) = { .0. } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmcntz.p | |- .(+) = ( LSSum ` G ) |
|
| 2 | lsmcntz.s | |- ( ph -> S e. ( SubGrp ` G ) ) |
|
| 3 | lsmcntz.t | |- ( ph -> T e. ( SubGrp ` G ) ) |
|
| 4 | lsmcntz.u | |- ( ph -> U e. ( SubGrp ` G ) ) |
|
| 5 | lsmdisj.o | |- .0. = ( 0g ` G ) |
|
| 6 | lsmdisj.i | |- ( ph -> ( ( S .(+) T ) i^i U ) = { .0. } ) |
|
| 7 | 1 | lsmub1 | |- ( ( S e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) ) -> S C_ ( S .(+) T ) ) |
| 8 | 2 3 7 | syl2anc | |- ( ph -> S C_ ( S .(+) T ) ) |
| 9 | 8 | ssrind | |- ( ph -> ( S i^i U ) C_ ( ( S .(+) T ) i^i U ) ) |
| 10 | 9 6 | sseqtrd | |- ( ph -> ( S i^i U ) C_ { .0. } ) |
| 11 | 5 | subg0cl | |- ( S e. ( SubGrp ` G ) -> .0. e. S ) |
| 12 | 2 11 | syl | |- ( ph -> .0. e. S ) |
| 13 | 5 | subg0cl | |- ( U e. ( SubGrp ` G ) -> .0. e. U ) |
| 14 | 4 13 | syl | |- ( ph -> .0. e. U ) |
| 15 | 12 14 | elind | |- ( ph -> .0. e. ( S i^i U ) ) |
| 16 | 15 | snssd | |- ( ph -> { .0. } C_ ( S i^i U ) ) |
| 17 | 10 16 | eqssd | |- ( ph -> ( S i^i U ) = { .0. } ) |
| 18 | 1 | lsmub2 | |- ( ( S e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) ) -> T C_ ( S .(+) T ) ) |
| 19 | 2 3 18 | syl2anc | |- ( ph -> T C_ ( S .(+) T ) ) |
| 20 | 19 | ssrind | |- ( ph -> ( T i^i U ) C_ ( ( S .(+) T ) i^i U ) ) |
| 21 | 20 6 | sseqtrd | |- ( ph -> ( T i^i U ) C_ { .0. } ) |
| 22 | 5 | subg0cl | |- ( T e. ( SubGrp ` G ) -> .0. e. T ) |
| 23 | 3 22 | syl | |- ( ph -> .0. e. T ) |
| 24 | 23 14 | elind | |- ( ph -> .0. e. ( T i^i U ) ) |
| 25 | 24 | snssd | |- ( ph -> { .0. } C_ ( T i^i U ) ) |
| 26 | 21 25 | eqssd | |- ( ph -> ( T i^i U ) = { .0. } ) |
| 27 | 17 26 | jca | |- ( ph -> ( ( S i^i U ) = { .0. } /\ ( T i^i U ) = { .0. } ) ) |