This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Disjointness from a subgroup sum. (Contributed by Mario Carneiro, 21-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lsmcntz.p | ||
| lsmcntz.s | |||
| lsmcntz.t | |||
| lsmcntz.u | |||
| lsmdisj.o | |||
| lsmdisj.i | |||
| Assertion | lsmdisj |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmcntz.p | ||
| 2 | lsmcntz.s | ||
| 3 | lsmcntz.t | ||
| 4 | lsmcntz.u | ||
| 5 | lsmdisj.o | ||
| 6 | lsmdisj.i | ||
| 7 | 1 | lsmub1 | |
| 8 | 2 3 7 | syl2anc | |
| 9 | 8 | ssrind | |
| 10 | 9 6 | sseqtrd | |
| 11 | 5 | subg0cl | |
| 12 | 2 11 | syl | |
| 13 | 5 | subg0cl | |
| 14 | 4 13 | syl | |
| 15 | 12 14 | elind | |
| 16 | 15 | snssd | |
| 17 | 10 16 | eqssd | |
| 18 | 1 | lsmub2 | |
| 19 | 2 3 18 | syl2anc | |
| 20 | 19 | ssrind | |
| 21 | 20 6 | sseqtrd | |
| 22 | 5 | subg0cl | |
| 23 | 3 22 | syl | |
| 24 | 23 14 | elind | |
| 25 | 24 | snssd | |
| 26 | 21 25 | eqssd | |
| 27 | 17 26 | jca |