This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subgroup sum commutes (extended domain version). (Contributed by NM, 25-Feb-2014) (Revised by Mario Carneiro, 19-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lsmcomx.v | |- B = ( Base ` G ) |
|
| lsmcomx.s | |- .(+) = ( LSSum ` G ) |
||
| Assertion | lsmcomx | |- ( ( G e. Abel /\ T C_ B /\ U C_ B ) -> ( T .(+) U ) = ( U .(+) T ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmcomx.v | |- B = ( Base ` G ) |
|
| 2 | lsmcomx.s | |- .(+) = ( LSSum ` G ) |
|
| 3 | simpl1 | |- ( ( ( G e. Abel /\ T C_ B /\ U C_ B ) /\ ( y e. T /\ z e. U ) ) -> G e. Abel ) |
|
| 4 | simpl2 | |- ( ( ( G e. Abel /\ T C_ B /\ U C_ B ) /\ ( y e. T /\ z e. U ) ) -> T C_ B ) |
|
| 5 | simprl | |- ( ( ( G e. Abel /\ T C_ B /\ U C_ B ) /\ ( y e. T /\ z e. U ) ) -> y e. T ) |
|
| 6 | 4 5 | sseldd | |- ( ( ( G e. Abel /\ T C_ B /\ U C_ B ) /\ ( y e. T /\ z e. U ) ) -> y e. B ) |
| 7 | simpl3 | |- ( ( ( G e. Abel /\ T C_ B /\ U C_ B ) /\ ( y e. T /\ z e. U ) ) -> U C_ B ) |
|
| 8 | simprr | |- ( ( ( G e. Abel /\ T C_ B /\ U C_ B ) /\ ( y e. T /\ z e. U ) ) -> z e. U ) |
|
| 9 | 7 8 | sseldd | |- ( ( ( G e. Abel /\ T C_ B /\ U C_ B ) /\ ( y e. T /\ z e. U ) ) -> z e. B ) |
| 10 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 11 | 1 10 | ablcom | |- ( ( G e. Abel /\ y e. B /\ z e. B ) -> ( y ( +g ` G ) z ) = ( z ( +g ` G ) y ) ) |
| 12 | 3 6 9 11 | syl3anc | |- ( ( ( G e. Abel /\ T C_ B /\ U C_ B ) /\ ( y e. T /\ z e. U ) ) -> ( y ( +g ` G ) z ) = ( z ( +g ` G ) y ) ) |
| 13 | 12 | eqeq2d | |- ( ( ( G e. Abel /\ T C_ B /\ U C_ B ) /\ ( y e. T /\ z e. U ) ) -> ( x = ( y ( +g ` G ) z ) <-> x = ( z ( +g ` G ) y ) ) ) |
| 14 | 13 | 2rexbidva | |- ( ( G e. Abel /\ T C_ B /\ U C_ B ) -> ( E. y e. T E. z e. U x = ( y ( +g ` G ) z ) <-> E. y e. T E. z e. U x = ( z ( +g ` G ) y ) ) ) |
| 15 | rexcom | |- ( E. y e. T E. z e. U x = ( z ( +g ` G ) y ) <-> E. z e. U E. y e. T x = ( z ( +g ` G ) y ) ) |
|
| 16 | 14 15 | bitrdi | |- ( ( G e. Abel /\ T C_ B /\ U C_ B ) -> ( E. y e. T E. z e. U x = ( y ( +g ` G ) z ) <-> E. z e. U E. y e. T x = ( z ( +g ` G ) y ) ) ) |
| 17 | 1 10 2 | lsmelvalx | |- ( ( G e. Abel /\ T C_ B /\ U C_ B ) -> ( x e. ( T .(+) U ) <-> E. y e. T E. z e. U x = ( y ( +g ` G ) z ) ) ) |
| 18 | 1 10 2 | lsmelvalx | |- ( ( G e. Abel /\ U C_ B /\ T C_ B ) -> ( x e. ( U .(+) T ) <-> E. z e. U E. y e. T x = ( z ( +g ` G ) y ) ) ) |
| 19 | 18 | 3com23 | |- ( ( G e. Abel /\ T C_ B /\ U C_ B ) -> ( x e. ( U .(+) T ) <-> E. z e. U E. y e. T x = ( z ( +g ` G ) y ) ) ) |
| 20 | 16 17 19 | 3bitr4d | |- ( ( G e. Abel /\ T C_ B /\ U C_ B ) -> ( x e. ( T .(+) U ) <-> x e. ( U .(+) T ) ) ) |
| 21 | 20 | eqrdv | |- ( ( G e. Abel /\ T C_ B /\ U C_ B ) -> ( T .(+) U ) = ( U .(+) T ) ) |