This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of limit points of a subset of the base set of a topology. Alternate definition of limit point in Munkres p. 97. (Contributed by NM, 10-Feb-2007) (Revised by Mario Carneiro, 11-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lpfval.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | lpval | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) = { 𝑥 ∣ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑆 ∖ { 𝑥 } ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lpfval.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | lpfval | ⊢ ( 𝐽 ∈ Top → ( limPt ‘ 𝐽 ) = ( 𝑦 ∈ 𝒫 𝑋 ↦ { 𝑥 ∣ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑦 ∖ { 𝑥 } ) ) } ) ) |
| 3 | 2 | fveq1d | ⊢ ( 𝐽 ∈ Top → ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) = ( ( 𝑦 ∈ 𝒫 𝑋 ↦ { 𝑥 ∣ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑦 ∖ { 𝑥 } ) ) } ) ‘ 𝑆 ) ) |
| 4 | 3 | adantr | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) = ( ( 𝑦 ∈ 𝒫 𝑋 ↦ { 𝑥 ∣ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑦 ∖ { 𝑥 } ) ) } ) ‘ 𝑆 ) ) |
| 5 | eqid | ⊢ ( 𝑦 ∈ 𝒫 𝑋 ↦ { 𝑥 ∣ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑦 ∖ { 𝑥 } ) ) } ) = ( 𝑦 ∈ 𝒫 𝑋 ↦ { 𝑥 ∣ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑦 ∖ { 𝑥 } ) ) } ) | |
| 6 | difeq1 | ⊢ ( 𝑦 = 𝑆 → ( 𝑦 ∖ { 𝑥 } ) = ( 𝑆 ∖ { 𝑥 } ) ) | |
| 7 | 6 | fveq2d | ⊢ ( 𝑦 = 𝑆 → ( ( cls ‘ 𝐽 ) ‘ ( 𝑦 ∖ { 𝑥 } ) ) = ( ( cls ‘ 𝐽 ) ‘ ( 𝑆 ∖ { 𝑥 } ) ) ) |
| 8 | 7 | eleq2d | ⊢ ( 𝑦 = 𝑆 → ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑦 ∖ { 𝑥 } ) ) ↔ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑆 ∖ { 𝑥 } ) ) ) ) |
| 9 | 8 | abbidv | ⊢ ( 𝑦 = 𝑆 → { 𝑥 ∣ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑦 ∖ { 𝑥 } ) ) } = { 𝑥 ∣ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑆 ∖ { 𝑥 } ) ) } ) |
| 10 | 1 | topopn | ⊢ ( 𝐽 ∈ Top → 𝑋 ∈ 𝐽 ) |
| 11 | elpw2g | ⊢ ( 𝑋 ∈ 𝐽 → ( 𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋 ) ) | |
| 12 | 10 11 | syl | ⊢ ( 𝐽 ∈ Top → ( 𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋 ) ) |
| 13 | 12 | biimpar | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → 𝑆 ∈ 𝒫 𝑋 ) |
| 14 | 10 | adantr | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → 𝑋 ∈ 𝐽 ) |
| 15 | ssdifss | ⊢ ( 𝑆 ⊆ 𝑋 → ( 𝑆 ∖ { 𝑥 } ) ⊆ 𝑋 ) | |
| 16 | 1 | clsss3 | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑆 ∖ { 𝑥 } ) ⊆ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ ( 𝑆 ∖ { 𝑥 } ) ) ⊆ 𝑋 ) |
| 17 | 16 | sseld | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑆 ∖ { 𝑥 } ) ⊆ 𝑋 ) → ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑆 ∖ { 𝑥 } ) ) → 𝑥 ∈ 𝑋 ) ) |
| 18 | 15 17 | sylan2 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑆 ∖ { 𝑥 } ) ) → 𝑥 ∈ 𝑋 ) ) |
| 19 | 18 | abssdv | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → { 𝑥 ∣ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑆 ∖ { 𝑥 } ) ) } ⊆ 𝑋 ) |
| 20 | 14 19 | ssexd | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → { 𝑥 ∣ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑆 ∖ { 𝑥 } ) ) } ∈ V ) |
| 21 | 5 9 13 20 | fvmptd3 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( 𝑦 ∈ 𝒫 𝑋 ↦ { 𝑥 ∣ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑦 ∖ { 𝑥 } ) ) } ) ‘ 𝑆 ) = { 𝑥 ∣ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑆 ∖ { 𝑥 } ) ) } ) |
| 22 | 4 21 | eqtrd | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) = { 𝑥 ∣ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑆 ∖ { 𝑥 } ) ) } ) |