This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The limit point function on the subsets of a topology's base set. (Contributed by NM, 10-Feb-2007) (Revised by Mario Carneiro, 11-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lpfval.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | lpfval | ⊢ ( 𝐽 ∈ Top → ( limPt ‘ 𝐽 ) = ( 𝑥 ∈ 𝒫 𝑋 ↦ { 𝑦 ∣ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ∖ { 𝑦 } ) ) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lpfval.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | topopn | ⊢ ( 𝐽 ∈ Top → 𝑋 ∈ 𝐽 ) |
| 3 | pwexg | ⊢ ( 𝑋 ∈ 𝐽 → 𝒫 𝑋 ∈ V ) | |
| 4 | mptexg | ⊢ ( 𝒫 𝑋 ∈ V → ( 𝑥 ∈ 𝒫 𝑋 ↦ { 𝑦 ∣ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ∖ { 𝑦 } ) ) } ) ∈ V ) | |
| 5 | 2 3 4 | 3syl | ⊢ ( 𝐽 ∈ Top → ( 𝑥 ∈ 𝒫 𝑋 ↦ { 𝑦 ∣ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ∖ { 𝑦 } ) ) } ) ∈ V ) |
| 6 | unieq | ⊢ ( 𝑗 = 𝐽 → ∪ 𝑗 = ∪ 𝐽 ) | |
| 7 | 6 1 | eqtr4di | ⊢ ( 𝑗 = 𝐽 → ∪ 𝑗 = 𝑋 ) |
| 8 | 7 | pweqd | ⊢ ( 𝑗 = 𝐽 → 𝒫 ∪ 𝑗 = 𝒫 𝑋 ) |
| 9 | fveq2 | ⊢ ( 𝑗 = 𝐽 → ( cls ‘ 𝑗 ) = ( cls ‘ 𝐽 ) ) | |
| 10 | 9 | fveq1d | ⊢ ( 𝑗 = 𝐽 → ( ( cls ‘ 𝑗 ) ‘ ( 𝑥 ∖ { 𝑦 } ) ) = ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ∖ { 𝑦 } ) ) ) |
| 11 | 10 | eleq2d | ⊢ ( 𝑗 = 𝐽 → ( 𝑦 ∈ ( ( cls ‘ 𝑗 ) ‘ ( 𝑥 ∖ { 𝑦 } ) ) ↔ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ∖ { 𝑦 } ) ) ) ) |
| 12 | 11 | abbidv | ⊢ ( 𝑗 = 𝐽 → { 𝑦 ∣ 𝑦 ∈ ( ( cls ‘ 𝑗 ) ‘ ( 𝑥 ∖ { 𝑦 } ) ) } = { 𝑦 ∣ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ∖ { 𝑦 } ) ) } ) |
| 13 | 8 12 | mpteq12dv | ⊢ ( 𝑗 = 𝐽 → ( 𝑥 ∈ 𝒫 ∪ 𝑗 ↦ { 𝑦 ∣ 𝑦 ∈ ( ( cls ‘ 𝑗 ) ‘ ( 𝑥 ∖ { 𝑦 } ) ) } ) = ( 𝑥 ∈ 𝒫 𝑋 ↦ { 𝑦 ∣ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ∖ { 𝑦 } ) ) } ) ) |
| 14 | df-lp | ⊢ limPt = ( 𝑗 ∈ Top ↦ ( 𝑥 ∈ 𝒫 ∪ 𝑗 ↦ { 𝑦 ∣ 𝑦 ∈ ( ( cls ‘ 𝑗 ) ‘ ( 𝑥 ∖ { 𝑦 } ) ) } ) ) | |
| 15 | 13 14 | fvmptg | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑥 ∈ 𝒫 𝑋 ↦ { 𝑦 ∣ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ∖ { 𝑦 } ) ) } ) ∈ V ) → ( limPt ‘ 𝐽 ) = ( 𝑥 ∈ 𝒫 𝑋 ↦ { 𝑦 ∣ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ∖ { 𝑦 } ) ) } ) ) |
| 16 | 5 15 | mpdan | ⊢ ( 𝐽 ∈ Top → ( limPt ‘ 𝐽 ) = ( 𝑥 ∈ 𝒫 𝑋 ↦ { 𝑦 ∣ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ∖ { 𝑦 } ) ) } ) ) |