This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of limit points of a subset of the base set of a topology. Alternate definition of limit point in Munkres p. 97. (Contributed by NM, 10-Feb-2007) (Revised by Mario Carneiro, 11-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lpfval.1 | |- X = U. J |
|
| Assertion | lpval | |- ( ( J e. Top /\ S C_ X ) -> ( ( limPt ` J ) ` S ) = { x | x e. ( ( cls ` J ) ` ( S \ { x } ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lpfval.1 | |- X = U. J |
|
| 2 | 1 | lpfval | |- ( J e. Top -> ( limPt ` J ) = ( y e. ~P X |-> { x | x e. ( ( cls ` J ) ` ( y \ { x } ) ) } ) ) |
| 3 | 2 | fveq1d | |- ( J e. Top -> ( ( limPt ` J ) ` S ) = ( ( y e. ~P X |-> { x | x e. ( ( cls ` J ) ` ( y \ { x } ) ) } ) ` S ) ) |
| 4 | 3 | adantr | |- ( ( J e. Top /\ S C_ X ) -> ( ( limPt ` J ) ` S ) = ( ( y e. ~P X |-> { x | x e. ( ( cls ` J ) ` ( y \ { x } ) ) } ) ` S ) ) |
| 5 | eqid | |- ( y e. ~P X |-> { x | x e. ( ( cls ` J ) ` ( y \ { x } ) ) } ) = ( y e. ~P X |-> { x | x e. ( ( cls ` J ) ` ( y \ { x } ) ) } ) |
|
| 6 | difeq1 | |- ( y = S -> ( y \ { x } ) = ( S \ { x } ) ) |
|
| 7 | 6 | fveq2d | |- ( y = S -> ( ( cls ` J ) ` ( y \ { x } ) ) = ( ( cls ` J ) ` ( S \ { x } ) ) ) |
| 8 | 7 | eleq2d | |- ( y = S -> ( x e. ( ( cls ` J ) ` ( y \ { x } ) ) <-> x e. ( ( cls ` J ) ` ( S \ { x } ) ) ) ) |
| 9 | 8 | abbidv | |- ( y = S -> { x | x e. ( ( cls ` J ) ` ( y \ { x } ) ) } = { x | x e. ( ( cls ` J ) ` ( S \ { x } ) ) } ) |
| 10 | 1 | topopn | |- ( J e. Top -> X e. J ) |
| 11 | elpw2g | |- ( X e. J -> ( S e. ~P X <-> S C_ X ) ) |
|
| 12 | 10 11 | syl | |- ( J e. Top -> ( S e. ~P X <-> S C_ X ) ) |
| 13 | 12 | biimpar | |- ( ( J e. Top /\ S C_ X ) -> S e. ~P X ) |
| 14 | 10 | adantr | |- ( ( J e. Top /\ S C_ X ) -> X e. J ) |
| 15 | ssdifss | |- ( S C_ X -> ( S \ { x } ) C_ X ) |
|
| 16 | 1 | clsss3 | |- ( ( J e. Top /\ ( S \ { x } ) C_ X ) -> ( ( cls ` J ) ` ( S \ { x } ) ) C_ X ) |
| 17 | 16 | sseld | |- ( ( J e. Top /\ ( S \ { x } ) C_ X ) -> ( x e. ( ( cls ` J ) ` ( S \ { x } ) ) -> x e. X ) ) |
| 18 | 15 17 | sylan2 | |- ( ( J e. Top /\ S C_ X ) -> ( x e. ( ( cls ` J ) ` ( S \ { x } ) ) -> x e. X ) ) |
| 19 | 18 | abssdv | |- ( ( J e. Top /\ S C_ X ) -> { x | x e. ( ( cls ` J ) ` ( S \ { x } ) ) } C_ X ) |
| 20 | 14 19 | ssexd | |- ( ( J e. Top /\ S C_ X ) -> { x | x e. ( ( cls ` J ) ` ( S \ { x } ) ) } e. _V ) |
| 21 | 5 9 13 20 | fvmptd3 | |- ( ( J e. Top /\ S C_ X ) -> ( ( y e. ~P X |-> { x | x e. ( ( cls ` J ) ` ( y \ { x } ) ) } ) ` S ) = { x | x e. ( ( cls ` J ) ` ( S \ { x } ) ) } ) |
| 22 | 4 21 | eqtrd | |- ( ( J e. Top /\ S C_ X ) -> ( ( limPt ` J ) ` S ) = { x | x e. ( ( cls ` J ) ` ( S \ { x } ) ) } ) |