This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The endpoints of a loop (which is an edge at index J ) are two (identical) vertices A . (Contributed by AV, 1-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lpvtx.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| Assertion | lpvtx | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ ( 𝐼 ‘ 𝐽 ) = { 𝐴 } ) → 𝐴 ∈ ( Vtx ‘ 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lpvtx.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 2 | simp1 | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ ( 𝐼 ‘ 𝐽 ) = { 𝐴 } ) → 𝐺 ∈ UHGraph ) | |
| 3 | 1 | uhgrfun | ⊢ ( 𝐺 ∈ UHGraph → Fun 𝐼 ) |
| 4 | 3 | funfnd | ⊢ ( 𝐺 ∈ UHGraph → 𝐼 Fn dom 𝐼 ) |
| 5 | 4 | 3ad2ant1 | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ ( 𝐼 ‘ 𝐽 ) = { 𝐴 } ) → 𝐼 Fn dom 𝐼 ) |
| 6 | simp2 | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ ( 𝐼 ‘ 𝐽 ) = { 𝐴 } ) → 𝐽 ∈ dom 𝐼 ) | |
| 7 | 1 | uhgrn0 | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐼 Fn dom 𝐼 ∧ 𝐽 ∈ dom 𝐼 ) → ( 𝐼 ‘ 𝐽 ) ≠ ∅ ) |
| 8 | 2 5 6 7 | syl3anc | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ ( 𝐼 ‘ 𝐽 ) = { 𝐴 } ) → ( 𝐼 ‘ 𝐽 ) ≠ ∅ ) |
| 9 | neeq1 | ⊢ ( ( 𝐼 ‘ 𝐽 ) = { 𝐴 } → ( ( 𝐼 ‘ 𝐽 ) ≠ ∅ ↔ { 𝐴 } ≠ ∅ ) ) | |
| 10 | 9 | biimpd | ⊢ ( ( 𝐼 ‘ 𝐽 ) = { 𝐴 } → ( ( 𝐼 ‘ 𝐽 ) ≠ ∅ → { 𝐴 } ≠ ∅ ) ) |
| 11 | 10 | 3ad2ant3 | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ ( 𝐼 ‘ 𝐽 ) = { 𝐴 } ) → ( ( 𝐼 ‘ 𝐽 ) ≠ ∅ → { 𝐴 } ≠ ∅ ) ) |
| 12 | 8 11 | mpd | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ ( 𝐼 ‘ 𝐽 ) = { 𝐴 } ) → { 𝐴 } ≠ ∅ ) |
| 13 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 14 | 13 1 | uhgrss | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ) → ( 𝐼 ‘ 𝐽 ) ⊆ ( Vtx ‘ 𝐺 ) ) |
| 15 | 14 | 3adant3 | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ ( 𝐼 ‘ 𝐽 ) = { 𝐴 } ) → ( 𝐼 ‘ 𝐽 ) ⊆ ( Vtx ‘ 𝐺 ) ) |
| 16 | sseq1 | ⊢ ( ( 𝐼 ‘ 𝐽 ) = { 𝐴 } → ( ( 𝐼 ‘ 𝐽 ) ⊆ ( Vtx ‘ 𝐺 ) ↔ { 𝐴 } ⊆ ( Vtx ‘ 𝐺 ) ) ) | |
| 17 | 16 | 3ad2ant3 | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ ( 𝐼 ‘ 𝐽 ) = { 𝐴 } ) → ( ( 𝐼 ‘ 𝐽 ) ⊆ ( Vtx ‘ 𝐺 ) ↔ { 𝐴 } ⊆ ( Vtx ‘ 𝐺 ) ) ) |
| 18 | 15 17 | mpbid | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ ( 𝐼 ‘ 𝐽 ) = { 𝐴 } ) → { 𝐴 } ⊆ ( Vtx ‘ 𝐺 ) ) |
| 19 | snnzb | ⊢ ( 𝐴 ∈ V ↔ { 𝐴 } ≠ ∅ ) | |
| 20 | snssg | ⊢ ( 𝐴 ∈ V → ( 𝐴 ∈ ( Vtx ‘ 𝐺 ) ↔ { 𝐴 } ⊆ ( Vtx ‘ 𝐺 ) ) ) | |
| 21 | 19 20 | sylbir | ⊢ ( { 𝐴 } ≠ ∅ → ( 𝐴 ∈ ( Vtx ‘ 𝐺 ) ↔ { 𝐴 } ⊆ ( Vtx ‘ 𝐺 ) ) ) |
| 22 | 18 21 | syl5ibrcom | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ ( 𝐼 ‘ 𝐽 ) = { 𝐴 } ) → ( { 𝐴 } ≠ ∅ → 𝐴 ∈ ( Vtx ‘ 𝐺 ) ) ) |
| 23 | 12 22 | mpd | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ ( 𝐼 ‘ 𝐽 ) = { 𝐴 } ) → 𝐴 ∈ ( Vtx ‘ 𝐺 ) ) |