This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The logarithm function is not eventually bounded. (Contributed by Mario Carneiro, 30-Apr-2016) (Proof shortened by Mario Carneiro, 30-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | logno1 | ⊢ ¬ ( 𝑥 ∈ ℝ+ ↦ ( log ‘ 𝑥 ) ) ∈ 𝑂(1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elioore | ⊢ ( 𝑦 ∈ ( 1 (,) +∞ ) → 𝑦 ∈ ℝ ) | |
| 2 | 1 | adantl | ⊢ ( ( ( 𝑥 ∈ ℝ+ ↦ ( log ‘ 𝑥 ) ) ∈ 𝑂(1) ∧ 𝑦 ∈ ( 1 (,) +∞ ) ) → 𝑦 ∈ ℝ ) |
| 3 | 1rp | ⊢ 1 ∈ ℝ+ | |
| 4 | 3 | a1i | ⊢ ( ( ( 𝑥 ∈ ℝ+ ↦ ( log ‘ 𝑥 ) ) ∈ 𝑂(1) ∧ 𝑦 ∈ ( 1 (,) +∞ ) ) → 1 ∈ ℝ+ ) |
| 5 | 1red | ⊢ ( ( ( 𝑥 ∈ ℝ+ ↦ ( log ‘ 𝑥 ) ) ∈ 𝑂(1) ∧ 𝑦 ∈ ( 1 (,) +∞ ) ) → 1 ∈ ℝ ) | |
| 6 | eliooord | ⊢ ( 𝑦 ∈ ( 1 (,) +∞ ) → ( 1 < 𝑦 ∧ 𝑦 < +∞ ) ) | |
| 7 | 6 | adantl | ⊢ ( ( ( 𝑥 ∈ ℝ+ ↦ ( log ‘ 𝑥 ) ) ∈ 𝑂(1) ∧ 𝑦 ∈ ( 1 (,) +∞ ) ) → ( 1 < 𝑦 ∧ 𝑦 < +∞ ) ) |
| 8 | 7 | simpld | ⊢ ( ( ( 𝑥 ∈ ℝ+ ↦ ( log ‘ 𝑥 ) ) ∈ 𝑂(1) ∧ 𝑦 ∈ ( 1 (,) +∞ ) ) → 1 < 𝑦 ) |
| 9 | 5 2 8 | ltled | ⊢ ( ( ( 𝑥 ∈ ℝ+ ↦ ( log ‘ 𝑥 ) ) ∈ 𝑂(1) ∧ 𝑦 ∈ ( 1 (,) +∞ ) ) → 1 ≤ 𝑦 ) |
| 10 | 2 4 9 | rpgecld | ⊢ ( ( ( 𝑥 ∈ ℝ+ ↦ ( log ‘ 𝑥 ) ) ∈ 𝑂(1) ∧ 𝑦 ∈ ( 1 (,) +∞ ) ) → 𝑦 ∈ ℝ+ ) |
| 11 | 10 | ex | ⊢ ( ( 𝑥 ∈ ℝ+ ↦ ( log ‘ 𝑥 ) ) ∈ 𝑂(1) → ( 𝑦 ∈ ( 1 (,) +∞ ) → 𝑦 ∈ ℝ+ ) ) |
| 12 | 11 | ssrdv | ⊢ ( ( 𝑥 ∈ ℝ+ ↦ ( log ‘ 𝑥 ) ) ∈ 𝑂(1) → ( 1 (,) +∞ ) ⊆ ℝ+ ) |
| 13 | fveq2 | ⊢ ( 𝑥 = 𝑦 → ( log ‘ 𝑥 ) = ( log ‘ 𝑦 ) ) | |
| 14 | 13 | cbvmptv | ⊢ ( 𝑥 ∈ ℝ+ ↦ ( log ‘ 𝑥 ) ) = ( 𝑦 ∈ ℝ+ ↦ ( log ‘ 𝑦 ) ) |
| 15 | 14 | eleq1i | ⊢ ( ( 𝑥 ∈ ℝ+ ↦ ( log ‘ 𝑥 ) ) ∈ 𝑂(1) ↔ ( 𝑦 ∈ ℝ+ ↦ ( log ‘ 𝑦 ) ) ∈ 𝑂(1) ) |
| 16 | 15 | biimpi | ⊢ ( ( 𝑥 ∈ ℝ+ ↦ ( log ‘ 𝑥 ) ) ∈ 𝑂(1) → ( 𝑦 ∈ ℝ+ ↦ ( log ‘ 𝑦 ) ) ∈ 𝑂(1) ) |
| 17 | 12 16 | o1res2 | ⊢ ( ( 𝑥 ∈ ℝ+ ↦ ( log ‘ 𝑥 ) ) ∈ 𝑂(1) → ( 𝑦 ∈ ( 1 (,) +∞ ) ↦ ( log ‘ 𝑦 ) ) ∈ 𝑂(1) ) |
| 18 | 1red | ⊢ ( ( 𝑥 ∈ ℝ+ ↦ ( log ‘ 𝑥 ) ) ∈ 𝑂(1) → 1 ∈ ℝ ) | |
| 19 | 18 | rexrd | ⊢ ( ( 𝑥 ∈ ℝ+ ↦ ( log ‘ 𝑥 ) ) ∈ 𝑂(1) → 1 ∈ ℝ* ) |
| 20 | 18 | renepnfd | ⊢ ( ( 𝑥 ∈ ℝ+ ↦ ( log ‘ 𝑥 ) ) ∈ 𝑂(1) → 1 ≠ +∞ ) |
| 21 | ioopnfsup | ⊢ ( ( 1 ∈ ℝ* ∧ 1 ≠ +∞ ) → sup ( ( 1 (,) +∞ ) , ℝ* , < ) = +∞ ) | |
| 22 | 19 20 21 | syl2anc | ⊢ ( ( 𝑥 ∈ ℝ+ ↦ ( log ‘ 𝑥 ) ) ∈ 𝑂(1) → sup ( ( 1 (,) +∞ ) , ℝ* , < ) = +∞ ) |
| 23 | divlogrlim | ⊢ ( 𝑦 ∈ ( 1 (,) +∞ ) ↦ ( 1 / ( log ‘ 𝑦 ) ) ) ⇝𝑟 0 | |
| 24 | 23 | a1i | ⊢ ( ( 𝑥 ∈ ℝ+ ↦ ( log ‘ 𝑥 ) ) ∈ 𝑂(1) → ( 𝑦 ∈ ( 1 (,) +∞ ) ↦ ( 1 / ( log ‘ 𝑦 ) ) ) ⇝𝑟 0 ) |
| 25 | 2 8 | rplogcld | ⊢ ( ( ( 𝑥 ∈ ℝ+ ↦ ( log ‘ 𝑥 ) ) ∈ 𝑂(1) ∧ 𝑦 ∈ ( 1 (,) +∞ ) ) → ( log ‘ 𝑦 ) ∈ ℝ+ ) |
| 26 | 25 | rpcnd | ⊢ ( ( ( 𝑥 ∈ ℝ+ ↦ ( log ‘ 𝑥 ) ) ∈ 𝑂(1) ∧ 𝑦 ∈ ( 1 (,) +∞ ) ) → ( log ‘ 𝑦 ) ∈ ℂ ) |
| 27 | 25 | rpne0d | ⊢ ( ( ( 𝑥 ∈ ℝ+ ↦ ( log ‘ 𝑥 ) ) ∈ 𝑂(1) ∧ 𝑦 ∈ ( 1 (,) +∞ ) ) → ( log ‘ 𝑦 ) ≠ 0 ) |
| 28 | 22 24 26 27 | rlimno1 | ⊢ ( ( 𝑥 ∈ ℝ+ ↦ ( log ‘ 𝑥 ) ) ∈ 𝑂(1) → ¬ ( 𝑦 ∈ ( 1 (,) +∞ ) ↦ ( log ‘ 𝑦 ) ) ∈ 𝑂(1) ) |
| 29 | 17 28 | pm2.65i | ⊢ ¬ ( 𝑥 ∈ ℝ+ ↦ ( log ‘ 𝑥 ) ) ∈ 𝑂(1) |