This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The logarithm function is not eventually bounded. (Contributed by Mario Carneiro, 30-Apr-2016) (Proof shortened by Mario Carneiro, 30-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | logno1 | |- -. ( x e. RR+ |-> ( log ` x ) ) e. O(1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elioore | |- ( y e. ( 1 (,) +oo ) -> y e. RR ) |
|
| 2 | 1 | adantl | |- ( ( ( x e. RR+ |-> ( log ` x ) ) e. O(1) /\ y e. ( 1 (,) +oo ) ) -> y e. RR ) |
| 3 | 1rp | |- 1 e. RR+ |
|
| 4 | 3 | a1i | |- ( ( ( x e. RR+ |-> ( log ` x ) ) e. O(1) /\ y e. ( 1 (,) +oo ) ) -> 1 e. RR+ ) |
| 5 | 1red | |- ( ( ( x e. RR+ |-> ( log ` x ) ) e. O(1) /\ y e. ( 1 (,) +oo ) ) -> 1 e. RR ) |
|
| 6 | eliooord | |- ( y e. ( 1 (,) +oo ) -> ( 1 < y /\ y < +oo ) ) |
|
| 7 | 6 | adantl | |- ( ( ( x e. RR+ |-> ( log ` x ) ) e. O(1) /\ y e. ( 1 (,) +oo ) ) -> ( 1 < y /\ y < +oo ) ) |
| 8 | 7 | simpld | |- ( ( ( x e. RR+ |-> ( log ` x ) ) e. O(1) /\ y e. ( 1 (,) +oo ) ) -> 1 < y ) |
| 9 | 5 2 8 | ltled | |- ( ( ( x e. RR+ |-> ( log ` x ) ) e. O(1) /\ y e. ( 1 (,) +oo ) ) -> 1 <_ y ) |
| 10 | 2 4 9 | rpgecld | |- ( ( ( x e. RR+ |-> ( log ` x ) ) e. O(1) /\ y e. ( 1 (,) +oo ) ) -> y e. RR+ ) |
| 11 | 10 | ex | |- ( ( x e. RR+ |-> ( log ` x ) ) e. O(1) -> ( y e. ( 1 (,) +oo ) -> y e. RR+ ) ) |
| 12 | 11 | ssrdv | |- ( ( x e. RR+ |-> ( log ` x ) ) e. O(1) -> ( 1 (,) +oo ) C_ RR+ ) |
| 13 | fveq2 | |- ( x = y -> ( log ` x ) = ( log ` y ) ) |
|
| 14 | 13 | cbvmptv | |- ( x e. RR+ |-> ( log ` x ) ) = ( y e. RR+ |-> ( log ` y ) ) |
| 15 | 14 | eleq1i | |- ( ( x e. RR+ |-> ( log ` x ) ) e. O(1) <-> ( y e. RR+ |-> ( log ` y ) ) e. O(1) ) |
| 16 | 15 | biimpi | |- ( ( x e. RR+ |-> ( log ` x ) ) e. O(1) -> ( y e. RR+ |-> ( log ` y ) ) e. O(1) ) |
| 17 | 12 16 | o1res2 | |- ( ( x e. RR+ |-> ( log ` x ) ) e. O(1) -> ( y e. ( 1 (,) +oo ) |-> ( log ` y ) ) e. O(1) ) |
| 18 | 1red | |- ( ( x e. RR+ |-> ( log ` x ) ) e. O(1) -> 1 e. RR ) |
|
| 19 | 18 | rexrd | |- ( ( x e. RR+ |-> ( log ` x ) ) e. O(1) -> 1 e. RR* ) |
| 20 | 18 | renepnfd | |- ( ( x e. RR+ |-> ( log ` x ) ) e. O(1) -> 1 =/= +oo ) |
| 21 | ioopnfsup | |- ( ( 1 e. RR* /\ 1 =/= +oo ) -> sup ( ( 1 (,) +oo ) , RR* , < ) = +oo ) |
|
| 22 | 19 20 21 | syl2anc | |- ( ( x e. RR+ |-> ( log ` x ) ) e. O(1) -> sup ( ( 1 (,) +oo ) , RR* , < ) = +oo ) |
| 23 | divlogrlim | |- ( y e. ( 1 (,) +oo ) |-> ( 1 / ( log ` y ) ) ) ~~>r 0 |
|
| 24 | 23 | a1i | |- ( ( x e. RR+ |-> ( log ` x ) ) e. O(1) -> ( y e. ( 1 (,) +oo ) |-> ( 1 / ( log ` y ) ) ) ~~>r 0 ) |
| 25 | 2 8 | rplogcld | |- ( ( ( x e. RR+ |-> ( log ` x ) ) e. O(1) /\ y e. ( 1 (,) +oo ) ) -> ( log ` y ) e. RR+ ) |
| 26 | 25 | rpcnd | |- ( ( ( x e. RR+ |-> ( log ` x ) ) e. O(1) /\ y e. ( 1 (,) +oo ) ) -> ( log ` y ) e. CC ) |
| 27 | 25 | rpne0d | |- ( ( ( x e. RR+ |-> ( log ` x ) ) e. O(1) /\ y e. ( 1 (,) +oo ) ) -> ( log ` y ) =/= 0 ) |
| 28 | 22 24 26 27 | rlimno1 | |- ( ( x e. RR+ |-> ( log ` x ) ) e. O(1) -> -. ( y e. ( 1 (,) +oo ) |-> ( log ` y ) ) e. O(1) ) |
| 29 | 17 28 | pm2.65i | |- -. ( x e. RR+ |-> ( log ` x ) ) e. O(1) |