This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inverse logarithm function converges to zero. (Contributed by Mario Carneiro, 30-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | divlogrlim | ⊢ ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( 1 / ( log ‘ 𝑥 ) ) ) ⇝𝑟 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elioore | ⊢ ( 𝑥 ∈ ( 1 (,) +∞ ) → 𝑥 ∈ ℝ ) | |
| 2 | eliooord | ⊢ ( 𝑥 ∈ ( 1 (,) +∞ ) → ( 1 < 𝑥 ∧ 𝑥 < +∞ ) ) | |
| 3 | 2 | simpld | ⊢ ( 𝑥 ∈ ( 1 (,) +∞ ) → 1 < 𝑥 ) |
| 4 | 1 3 | rplogcld | ⊢ ( 𝑥 ∈ ( 1 (,) +∞ ) → ( log ‘ 𝑥 ) ∈ ℝ+ ) |
| 5 | 4 | rprecred | ⊢ ( 𝑥 ∈ ( 1 (,) +∞ ) → ( 1 / ( log ‘ 𝑥 ) ) ∈ ℝ ) |
| 6 | 5 | recnd | ⊢ ( 𝑥 ∈ ( 1 (,) +∞ ) → ( 1 / ( log ‘ 𝑥 ) ) ∈ ℂ ) |
| 7 | 6 | rgen | ⊢ ∀ 𝑥 ∈ ( 1 (,) +∞ ) ( 1 / ( log ‘ 𝑥 ) ) ∈ ℂ |
| 8 | 7 | a1i | ⊢ ( ⊤ → ∀ 𝑥 ∈ ( 1 (,) +∞ ) ( 1 / ( log ‘ 𝑥 ) ) ∈ ℂ ) |
| 9 | ioossre | ⊢ ( 1 (,) +∞ ) ⊆ ℝ | |
| 10 | 9 | a1i | ⊢ ( ⊤ → ( 1 (,) +∞ ) ⊆ ℝ ) |
| 11 | 8 10 | rlim0lt | ⊢ ( ⊤ → ( ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( 1 / ( log ‘ 𝑥 ) ) ) ⇝𝑟 0 ↔ ∀ 𝑦 ∈ ℝ+ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ ( 1 (,) +∞ ) ( 𝑐 < 𝑥 → ( abs ‘ ( 1 / ( log ‘ 𝑥 ) ) ) < 𝑦 ) ) ) |
| 12 | 11 | mptru | ⊢ ( ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( 1 / ( log ‘ 𝑥 ) ) ) ⇝𝑟 0 ↔ ∀ 𝑦 ∈ ℝ+ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ ( 1 (,) +∞ ) ( 𝑐 < 𝑥 → ( abs ‘ ( 1 / ( log ‘ 𝑥 ) ) ) < 𝑦 ) ) |
| 13 | id | ⊢ ( 𝑦 ∈ ℝ+ → 𝑦 ∈ ℝ+ ) | |
| 14 | 13 | rprecred | ⊢ ( 𝑦 ∈ ℝ+ → ( 1 / 𝑦 ) ∈ ℝ ) |
| 15 | 14 | reefcld | ⊢ ( 𝑦 ∈ ℝ+ → ( exp ‘ ( 1 / 𝑦 ) ) ∈ ℝ ) |
| 16 | 5 | ad2antlr | ⊢ ( ( ( 𝑦 ∈ ℝ+ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ ( exp ‘ ( 1 / 𝑦 ) ) < 𝑥 ) → ( 1 / ( log ‘ 𝑥 ) ) ∈ ℝ ) |
| 17 | 1 | ad2antlr | ⊢ ( ( ( 𝑦 ∈ ℝ+ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ ( exp ‘ ( 1 / 𝑦 ) ) < 𝑥 ) → 𝑥 ∈ ℝ ) |
| 18 | 3 | ad2antlr | ⊢ ( ( ( 𝑦 ∈ ℝ+ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ ( exp ‘ ( 1 / 𝑦 ) ) < 𝑥 ) → 1 < 𝑥 ) |
| 19 | 17 18 | rplogcld | ⊢ ( ( ( 𝑦 ∈ ℝ+ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ ( exp ‘ ( 1 / 𝑦 ) ) < 𝑥 ) → ( log ‘ 𝑥 ) ∈ ℝ+ ) |
| 20 | 19 | rpreccld | ⊢ ( ( ( 𝑦 ∈ ℝ+ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ ( exp ‘ ( 1 / 𝑦 ) ) < 𝑥 ) → ( 1 / ( log ‘ 𝑥 ) ) ∈ ℝ+ ) |
| 21 | 20 | rpge0d | ⊢ ( ( ( 𝑦 ∈ ℝ+ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ ( exp ‘ ( 1 / 𝑦 ) ) < 𝑥 ) → 0 ≤ ( 1 / ( log ‘ 𝑥 ) ) ) |
| 22 | 16 21 | absidd | ⊢ ( ( ( 𝑦 ∈ ℝ+ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ ( exp ‘ ( 1 / 𝑦 ) ) < 𝑥 ) → ( abs ‘ ( 1 / ( log ‘ 𝑥 ) ) ) = ( 1 / ( log ‘ 𝑥 ) ) ) |
| 23 | simpll | ⊢ ( ( ( 𝑦 ∈ ℝ+ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ ( exp ‘ ( 1 / 𝑦 ) ) < 𝑥 ) → 𝑦 ∈ ℝ+ ) | |
| 24 | 4 | ad2antlr | ⊢ ( ( ( 𝑦 ∈ ℝ+ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ ( exp ‘ ( 1 / 𝑦 ) ) < 𝑥 ) → ( log ‘ 𝑥 ) ∈ ℝ+ ) |
| 25 | simpr | ⊢ ( ( ( 𝑦 ∈ ℝ+ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ ( exp ‘ ( 1 / 𝑦 ) ) < 𝑥 ) → ( exp ‘ ( 1 / 𝑦 ) ) < 𝑥 ) | |
| 26 | 1rp | ⊢ 1 ∈ ℝ+ | |
| 27 | 26 | a1i | ⊢ ( ( ( 𝑦 ∈ ℝ+ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ ( exp ‘ ( 1 / 𝑦 ) ) < 𝑥 ) → 1 ∈ ℝ+ ) |
| 28 | 27 | rpred | ⊢ ( ( ( 𝑦 ∈ ℝ+ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ ( exp ‘ ( 1 / 𝑦 ) ) < 𝑥 ) → 1 ∈ ℝ ) |
| 29 | 28 17 18 | ltled | ⊢ ( ( ( 𝑦 ∈ ℝ+ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ ( exp ‘ ( 1 / 𝑦 ) ) < 𝑥 ) → 1 ≤ 𝑥 ) |
| 30 | 17 27 29 | rpgecld | ⊢ ( ( ( 𝑦 ∈ ℝ+ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ ( exp ‘ ( 1 / 𝑦 ) ) < 𝑥 ) → 𝑥 ∈ ℝ+ ) |
| 31 | 30 | reeflogd | ⊢ ( ( ( 𝑦 ∈ ℝ+ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ ( exp ‘ ( 1 / 𝑦 ) ) < 𝑥 ) → ( exp ‘ ( log ‘ 𝑥 ) ) = 𝑥 ) |
| 32 | 25 31 | breqtrrd | ⊢ ( ( ( 𝑦 ∈ ℝ+ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ ( exp ‘ ( 1 / 𝑦 ) ) < 𝑥 ) → ( exp ‘ ( 1 / 𝑦 ) ) < ( exp ‘ ( log ‘ 𝑥 ) ) ) |
| 33 | 23 | rprecred | ⊢ ( ( ( 𝑦 ∈ ℝ+ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ ( exp ‘ ( 1 / 𝑦 ) ) < 𝑥 ) → ( 1 / 𝑦 ) ∈ ℝ ) |
| 34 | 24 | rpred | ⊢ ( ( ( 𝑦 ∈ ℝ+ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ ( exp ‘ ( 1 / 𝑦 ) ) < 𝑥 ) → ( log ‘ 𝑥 ) ∈ ℝ ) |
| 35 | eflt | ⊢ ( ( ( 1 / 𝑦 ) ∈ ℝ ∧ ( log ‘ 𝑥 ) ∈ ℝ ) → ( ( 1 / 𝑦 ) < ( log ‘ 𝑥 ) ↔ ( exp ‘ ( 1 / 𝑦 ) ) < ( exp ‘ ( log ‘ 𝑥 ) ) ) ) | |
| 36 | 33 34 35 | syl2anc | ⊢ ( ( ( 𝑦 ∈ ℝ+ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ ( exp ‘ ( 1 / 𝑦 ) ) < 𝑥 ) → ( ( 1 / 𝑦 ) < ( log ‘ 𝑥 ) ↔ ( exp ‘ ( 1 / 𝑦 ) ) < ( exp ‘ ( log ‘ 𝑥 ) ) ) ) |
| 37 | 32 36 | mpbird | ⊢ ( ( ( 𝑦 ∈ ℝ+ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ ( exp ‘ ( 1 / 𝑦 ) ) < 𝑥 ) → ( 1 / 𝑦 ) < ( log ‘ 𝑥 ) ) |
| 38 | 23 24 37 | ltrec1d | ⊢ ( ( ( 𝑦 ∈ ℝ+ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ ( exp ‘ ( 1 / 𝑦 ) ) < 𝑥 ) → ( 1 / ( log ‘ 𝑥 ) ) < 𝑦 ) |
| 39 | 22 38 | eqbrtrd | ⊢ ( ( ( 𝑦 ∈ ℝ+ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ ( exp ‘ ( 1 / 𝑦 ) ) < 𝑥 ) → ( abs ‘ ( 1 / ( log ‘ 𝑥 ) ) ) < 𝑦 ) |
| 40 | 39 | ex | ⊢ ( ( 𝑦 ∈ ℝ+ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( exp ‘ ( 1 / 𝑦 ) ) < 𝑥 → ( abs ‘ ( 1 / ( log ‘ 𝑥 ) ) ) < 𝑦 ) ) |
| 41 | 40 | ralrimiva | ⊢ ( 𝑦 ∈ ℝ+ → ∀ 𝑥 ∈ ( 1 (,) +∞ ) ( ( exp ‘ ( 1 / 𝑦 ) ) < 𝑥 → ( abs ‘ ( 1 / ( log ‘ 𝑥 ) ) ) < 𝑦 ) ) |
| 42 | breq1 | ⊢ ( 𝑐 = ( exp ‘ ( 1 / 𝑦 ) ) → ( 𝑐 < 𝑥 ↔ ( exp ‘ ( 1 / 𝑦 ) ) < 𝑥 ) ) | |
| 43 | 42 | rspceaimv | ⊢ ( ( ( exp ‘ ( 1 / 𝑦 ) ) ∈ ℝ ∧ ∀ 𝑥 ∈ ( 1 (,) +∞ ) ( ( exp ‘ ( 1 / 𝑦 ) ) < 𝑥 → ( abs ‘ ( 1 / ( log ‘ 𝑥 ) ) ) < 𝑦 ) ) → ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ ( 1 (,) +∞ ) ( 𝑐 < 𝑥 → ( abs ‘ ( 1 / ( log ‘ 𝑥 ) ) ) < 𝑦 ) ) |
| 44 | 15 41 43 | syl2anc | ⊢ ( 𝑦 ∈ ℝ+ → ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ ( 1 (,) +∞ ) ( 𝑐 < 𝑥 → ( abs ‘ ( 1 / ( log ‘ 𝑥 ) ) ) < 𝑦 ) ) |
| 45 | 12 44 | mprgbir | ⊢ ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( 1 / ( log ‘ 𝑥 ) ) ) ⇝𝑟 0 |