This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The imaginary part of the logarithm is in ( -upi (,] pi ) . Alternate form of logimcld . (Contributed by David Moews, 28-Feb-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | logimcld.1 | ⊢ ( 𝜑 → 𝑋 ∈ ℂ ) | |
| logimcld.2 | ⊢ ( 𝜑 → 𝑋 ≠ 0 ) | ||
| Assertion | logimclad | ⊢ ( 𝜑 → ( ℑ ‘ ( log ‘ 𝑋 ) ) ∈ ( - π (,] π ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | logimcld.1 | ⊢ ( 𝜑 → 𝑋 ∈ ℂ ) | |
| 2 | logimcld.2 | ⊢ ( 𝜑 → 𝑋 ≠ 0 ) | |
| 3 | 1 2 | logcld | ⊢ ( 𝜑 → ( log ‘ 𝑋 ) ∈ ℂ ) |
| 4 | 3 | imcld | ⊢ ( 𝜑 → ( ℑ ‘ ( log ‘ 𝑋 ) ) ∈ ℝ ) |
| 5 | 1 2 | logimcld | ⊢ ( 𝜑 → ( - π < ( ℑ ‘ ( log ‘ 𝑋 ) ) ∧ ( ℑ ‘ ( log ‘ 𝑋 ) ) ≤ π ) ) |
| 6 | 5 | simpld | ⊢ ( 𝜑 → - π < ( ℑ ‘ ( log ‘ 𝑋 ) ) ) |
| 7 | 5 | simprd | ⊢ ( 𝜑 → ( ℑ ‘ ( log ‘ 𝑋 ) ) ≤ π ) |
| 8 | pire | ⊢ π ∈ ℝ | |
| 9 | 8 | renegcli | ⊢ - π ∈ ℝ |
| 10 | 9 | rexri | ⊢ - π ∈ ℝ* |
| 11 | elioc2 | ⊢ ( ( - π ∈ ℝ* ∧ π ∈ ℝ ) → ( ( ℑ ‘ ( log ‘ 𝑋 ) ) ∈ ( - π (,] π ) ↔ ( ( ℑ ‘ ( log ‘ 𝑋 ) ) ∈ ℝ ∧ - π < ( ℑ ‘ ( log ‘ 𝑋 ) ) ∧ ( ℑ ‘ ( log ‘ 𝑋 ) ) ≤ π ) ) ) | |
| 12 | 10 8 11 | mp2an | ⊢ ( ( ℑ ‘ ( log ‘ 𝑋 ) ) ∈ ( - π (,] π ) ↔ ( ( ℑ ‘ ( log ‘ 𝑋 ) ) ∈ ℝ ∧ - π < ( ℑ ‘ ( log ‘ 𝑋 ) ) ∧ ( ℑ ‘ ( log ‘ 𝑋 ) ) ≤ π ) ) |
| 13 | 4 6 7 12 | syl3anbrc | ⊢ ( 𝜑 → ( ℑ ‘ ( log ‘ 𝑋 ) ) ∈ ( - π (,] π ) ) |