This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The imaginary part of the logarithm is in ( -upi (,] pi ) . Alternate form of logimcld . (Contributed by David Moews, 28-Feb-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | logimcld.1 | |- ( ph -> X e. CC ) |
|
| logimcld.2 | |- ( ph -> X =/= 0 ) |
||
| Assertion | logimclad | |- ( ph -> ( Im ` ( log ` X ) ) e. ( -u _pi (,] _pi ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | logimcld.1 | |- ( ph -> X e. CC ) |
|
| 2 | logimcld.2 | |- ( ph -> X =/= 0 ) |
|
| 3 | 1 2 | logcld | |- ( ph -> ( log ` X ) e. CC ) |
| 4 | 3 | imcld | |- ( ph -> ( Im ` ( log ` X ) ) e. RR ) |
| 5 | 1 2 | logimcld | |- ( ph -> ( -u _pi < ( Im ` ( log ` X ) ) /\ ( Im ` ( log ` X ) ) <_ _pi ) ) |
| 6 | 5 | simpld | |- ( ph -> -u _pi < ( Im ` ( log ` X ) ) ) |
| 7 | 5 | simprd | |- ( ph -> ( Im ` ( log ` X ) ) <_ _pi ) |
| 8 | pire | |- _pi e. RR |
|
| 9 | 8 | renegcli | |- -u _pi e. RR |
| 10 | 9 | rexri | |- -u _pi e. RR* |
| 11 | elioc2 | |- ( ( -u _pi e. RR* /\ _pi e. RR ) -> ( ( Im ` ( log ` X ) ) e. ( -u _pi (,] _pi ) <-> ( ( Im ` ( log ` X ) ) e. RR /\ -u _pi < ( Im ` ( log ` X ) ) /\ ( Im ` ( log ` X ) ) <_ _pi ) ) ) |
|
| 12 | 10 8 11 | mp2an | |- ( ( Im ` ( log ` X ) ) e. ( -u _pi (,] _pi ) <-> ( ( Im ` ( log ` X ) ) e. RR /\ -u _pi < ( Im ` ( log ` X ) ) /\ ( Im ` ( log ` X ) ) <_ _pi ) ) |
| 13 | 4 6 7 12 | syl3anbrc | |- ( ph -> ( Im ` ( log ` X ) ) e. ( -u _pi (,] _pi ) ) |