This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The log x / x function is strictly decreasing on the reals greater than _e . (Contributed by Mario Carneiro, 3-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | logdivle | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ e ≤ 𝐵 ) ) → ( 𝐴 ≤ 𝐵 ↔ ( ( log ‘ 𝐵 ) / 𝐵 ) ≤ ( ( log ‘ 𝐴 ) / 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | logdivlt | ⊢ ( ( ( 𝐵 ∈ ℝ ∧ e ≤ 𝐵 ) ∧ ( 𝐴 ∈ ℝ ∧ e ≤ 𝐴 ) ) → ( 𝐵 < 𝐴 ↔ ( ( log ‘ 𝐴 ) / 𝐴 ) < ( ( log ‘ 𝐵 ) / 𝐵 ) ) ) | |
| 2 | 1 | ancoms | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ e ≤ 𝐵 ) ) → ( 𝐵 < 𝐴 ↔ ( ( log ‘ 𝐴 ) / 𝐴 ) < ( ( log ‘ 𝐵 ) / 𝐵 ) ) ) |
| 3 | 2 | notbid | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ e ≤ 𝐵 ) ) → ( ¬ 𝐵 < 𝐴 ↔ ¬ ( ( log ‘ 𝐴 ) / 𝐴 ) < ( ( log ‘ 𝐵 ) / 𝐵 ) ) ) |
| 4 | simpll | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ e ≤ 𝐵 ) ) → 𝐴 ∈ ℝ ) | |
| 5 | simprl | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ e ≤ 𝐵 ) ) → 𝐵 ∈ ℝ ) | |
| 6 | 4 5 | lenltd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ e ≤ 𝐵 ) ) → ( 𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴 ) ) |
| 7 | 0red | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ e ≤ 𝐵 ) ) → 0 ∈ ℝ ) | |
| 8 | ere | ⊢ e ∈ ℝ | |
| 9 | 8 | a1i | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ e ≤ 𝐵 ) ) → e ∈ ℝ ) |
| 10 | epos | ⊢ 0 < e | |
| 11 | 10 | a1i | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ e ≤ 𝐵 ) ) → 0 < e ) |
| 12 | simprr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ e ≤ 𝐵 ) ) → e ≤ 𝐵 ) | |
| 13 | 7 9 5 11 12 | ltletrd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ e ≤ 𝐵 ) ) → 0 < 𝐵 ) |
| 14 | 5 13 | elrpd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ e ≤ 𝐵 ) ) → 𝐵 ∈ ℝ+ ) |
| 15 | relogcl | ⊢ ( 𝐵 ∈ ℝ+ → ( log ‘ 𝐵 ) ∈ ℝ ) | |
| 16 | 14 15 | syl | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ e ≤ 𝐵 ) ) → ( log ‘ 𝐵 ) ∈ ℝ ) |
| 17 | 16 14 | rerpdivcld | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ e ≤ 𝐵 ) ) → ( ( log ‘ 𝐵 ) / 𝐵 ) ∈ ℝ ) |
| 18 | simplr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ e ≤ 𝐵 ) ) → e ≤ 𝐴 ) | |
| 19 | 7 9 4 11 18 | ltletrd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ e ≤ 𝐵 ) ) → 0 < 𝐴 ) |
| 20 | 4 19 | elrpd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ e ≤ 𝐵 ) ) → 𝐴 ∈ ℝ+ ) |
| 21 | relogcl | ⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ 𝐴 ) ∈ ℝ ) | |
| 22 | 20 21 | syl | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ e ≤ 𝐵 ) ) → ( log ‘ 𝐴 ) ∈ ℝ ) |
| 23 | 22 20 | rerpdivcld | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ e ≤ 𝐵 ) ) → ( ( log ‘ 𝐴 ) / 𝐴 ) ∈ ℝ ) |
| 24 | 17 23 | lenltd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ e ≤ 𝐵 ) ) → ( ( ( log ‘ 𝐵 ) / 𝐵 ) ≤ ( ( log ‘ 𝐴 ) / 𝐴 ) ↔ ¬ ( ( log ‘ 𝐴 ) / 𝐴 ) < ( ( log ‘ 𝐵 ) / 𝐵 ) ) ) |
| 25 | 3 6 24 | 3bitr4d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ e ≤ 𝐵 ) ) → ( 𝐴 ≤ 𝐵 ↔ ( ( log ‘ 𝐵 ) / 𝐵 ) ≤ ( ( log ‘ 𝐴 ) / 𝐴 ) ) ) |