This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in the set of continuous complex functions from A to B . (Contributed by Paul Chapman, 26-Nov-2007)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | elcncf1i.1 | ⊢ 𝐹 : 𝐴 ⟶ 𝐵 | |
| elcncf1i.2 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+ ) → 𝑍 ∈ ℝ+ ) | ||
| elcncf1i.3 | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ 𝑦 ∈ ℝ+ ) → ( ( abs ‘ ( 𝑥 − 𝑤 ) ) < 𝑍 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑤 ) ) ) < 𝑦 ) ) | ||
| Assertion | elcncf1ii | ⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) → 𝐹 ∈ ( 𝐴 –cn→ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elcncf1i.1 | ⊢ 𝐹 : 𝐴 ⟶ 𝐵 | |
| 2 | elcncf1i.2 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+ ) → 𝑍 ∈ ℝ+ ) | |
| 3 | elcncf1i.3 | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ 𝑦 ∈ ℝ+ ) → ( ( abs ‘ ( 𝑥 − 𝑤 ) ) < 𝑍 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑤 ) ) ) < 𝑦 ) ) | |
| 4 | 1 | a1i | ⊢ ( ⊤ → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 5 | 2 | a1i | ⊢ ( ⊤ → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+ ) → 𝑍 ∈ ℝ+ ) ) |
| 6 | 3 | a1i | ⊢ ( ⊤ → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ 𝑦 ∈ ℝ+ ) → ( ( abs ‘ ( 𝑥 − 𝑤 ) ) < 𝑍 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑤 ) ) ) < 𝑦 ) ) ) |
| 7 | 4 5 6 | elcncf1di | ⊢ ( ⊤ → ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) → 𝐹 ∈ ( 𝐴 –cn→ 𝐵 ) ) ) |
| 8 | 7 | mptru | ⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) → 𝐹 ∈ ( 𝐴 –cn→ 𝐵 ) ) |