This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If an eventually bounded function is bounded on every interval A i^i ( -oo , y ) by a function M ( y ) , then the function is bounded on the whole domain. (Contributed by Mario Carneiro, 9-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lo1bdd2.1 | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) | |
| lo1bdd2.2 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) | ||
| lo1bdd2.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) | ||
| lo1bdd2.4 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ≤𝑂(1) ) | ||
| lo1bdd2.5 | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ 𝐶 ≤ 𝑦 ) ) → 𝑀 ∈ ℝ ) | ||
| lo1bdd2.6 | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ ( ( 𝑦 ∈ ℝ ∧ 𝐶 ≤ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) → 𝐵 ≤ 𝑀 ) | ||
| Assertion | lo1bdd2 | ⊢ ( 𝜑 → ∃ 𝑚 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑚 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lo1bdd2.1 | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) | |
| 2 | lo1bdd2.2 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) | |
| 3 | lo1bdd2.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) | |
| 4 | lo1bdd2.4 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ≤𝑂(1) ) | |
| 5 | lo1bdd2.5 | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ 𝐶 ≤ 𝑦 ) ) → 𝑀 ∈ ℝ ) | |
| 6 | lo1bdd2.6 | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ ( ( 𝑦 ∈ ℝ ∧ 𝐶 ≤ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) → 𝐵 ≤ 𝑀 ) | |
| 7 | 1 3 2 | ello1mpt2 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ≤𝑂(1) ↔ ∃ 𝑦 ∈ ( 𝐶 [,) +∞ ) ∃ 𝑛 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑛 ) ) ) |
| 8 | 4 7 | mpbid | ⊢ ( 𝜑 → ∃ 𝑦 ∈ ( 𝐶 [,) +∞ ) ∃ 𝑛 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑛 ) ) |
| 9 | elicopnf | ⊢ ( 𝐶 ∈ ℝ → ( 𝑦 ∈ ( 𝐶 [,) +∞ ) ↔ ( 𝑦 ∈ ℝ ∧ 𝐶 ≤ 𝑦 ) ) ) | |
| 10 | 2 9 | syl | ⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐶 [,) +∞ ) ↔ ( 𝑦 ∈ ℝ ∧ 𝐶 ≤ 𝑦 ) ) ) |
| 11 | 10 | biimpa | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐶 [,) +∞ ) ) → ( 𝑦 ∈ ℝ ∧ 𝐶 ≤ 𝑦 ) ) |
| 12 | 11 5 | syldan | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐶 [,) +∞ ) ) → 𝑀 ∈ ℝ ) |
| 13 | 12 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐶 [,) +∞ ) ) ∧ ( 𝑛 ∈ ℝ ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑛 ) ) ) ∧ 𝑛 ≤ 𝑀 ) → 𝑀 ∈ ℝ ) |
| 14 | simplrl | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐶 [,) +∞ ) ) ∧ ( 𝑛 ∈ ℝ ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑛 ) ) ) ∧ ¬ 𝑛 ≤ 𝑀 ) → 𝑛 ∈ ℝ ) | |
| 15 | 13 14 | ifclda | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐶 [,) +∞ ) ) ∧ ( 𝑛 ∈ ℝ ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑛 ) ) ) → if ( 𝑛 ≤ 𝑀 , 𝑀 , 𝑛 ) ∈ ℝ ) |
| 16 | 1 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐶 [,) +∞ ) ) ∧ 𝑛 ∈ ℝ ) → 𝐴 ⊆ ℝ ) |
| 17 | 16 | sselda | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐶 [,) +∞ ) ) ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ℝ ) |
| 18 | 11 | simpld | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐶 [,) +∞ ) ) → 𝑦 ∈ ℝ ) |
| 19 | 18 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐶 [,) +∞ ) ) ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ ℝ ) |
| 20 | 17 19 | ltnled | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐶 [,) +∞ ) ) ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 < 𝑦 ↔ ¬ 𝑦 ≤ 𝑥 ) ) |
| 21 | 6 | expr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝐶 ≤ 𝑦 ) ) → ( 𝑥 < 𝑦 → 𝐵 ≤ 𝑀 ) ) |
| 22 | 21 | an32s | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ 𝐶 ≤ 𝑦 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 < 𝑦 → 𝐵 ≤ 𝑀 ) ) |
| 23 | 11 22 | syldanl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐶 [,) +∞ ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 < 𝑦 → 𝐵 ≤ 𝑀 ) ) |
| 24 | 23 | adantlr | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐶 [,) +∞ ) ) ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 < 𝑦 → 𝐵 ≤ 𝑀 ) ) |
| 25 | simplr | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐶 [,) +∞ ) ) ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → 𝑛 ∈ ℝ ) | |
| 26 | 12 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐶 [,) +∞ ) ) ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → 𝑀 ∈ ℝ ) |
| 27 | max2 | ⊢ ( ( 𝑛 ∈ ℝ ∧ 𝑀 ∈ ℝ ) → 𝑀 ≤ if ( 𝑛 ≤ 𝑀 , 𝑀 , 𝑛 ) ) | |
| 28 | 25 26 27 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐶 [,) +∞ ) ) ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → 𝑀 ≤ if ( 𝑛 ≤ 𝑀 , 𝑀 , 𝑛 ) ) |
| 29 | 3 | ad4ant14 | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐶 [,) +∞ ) ) ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
| 30 | 12 | ad3antrrr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐶 [,) +∞ ) ) ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑛 ≤ 𝑀 ) → 𝑀 ∈ ℝ ) |
| 31 | simpllr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐶 [,) +∞ ) ) ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) ∧ ¬ 𝑛 ≤ 𝑀 ) → 𝑛 ∈ ℝ ) | |
| 32 | 30 31 | ifclda | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐶 [,) +∞ ) ) ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → if ( 𝑛 ≤ 𝑀 , 𝑀 , 𝑛 ) ∈ ℝ ) |
| 33 | letr | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ if ( 𝑛 ≤ 𝑀 , 𝑀 , 𝑛 ) ∈ ℝ ) → ( ( 𝐵 ≤ 𝑀 ∧ 𝑀 ≤ if ( 𝑛 ≤ 𝑀 , 𝑀 , 𝑛 ) ) → 𝐵 ≤ if ( 𝑛 ≤ 𝑀 , 𝑀 , 𝑛 ) ) ) | |
| 34 | 29 26 32 33 | syl3anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐶 [,) +∞ ) ) ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐵 ≤ 𝑀 ∧ 𝑀 ≤ if ( 𝑛 ≤ 𝑀 , 𝑀 , 𝑛 ) ) → 𝐵 ≤ if ( 𝑛 ≤ 𝑀 , 𝑀 , 𝑛 ) ) ) |
| 35 | 28 34 | mpan2d | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐶 [,) +∞ ) ) ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 ≤ 𝑀 → 𝐵 ≤ if ( 𝑛 ≤ 𝑀 , 𝑀 , 𝑛 ) ) ) |
| 36 | 24 35 | syld | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐶 [,) +∞ ) ) ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 < 𝑦 → 𝐵 ≤ if ( 𝑛 ≤ 𝑀 , 𝑀 , 𝑛 ) ) ) |
| 37 | 20 36 | sylbird | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐶 [,) +∞ ) ) ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( ¬ 𝑦 ≤ 𝑥 → 𝐵 ≤ if ( 𝑛 ≤ 𝑀 , 𝑀 , 𝑛 ) ) ) |
| 38 | max1 | ⊢ ( ( 𝑛 ∈ ℝ ∧ 𝑀 ∈ ℝ ) → 𝑛 ≤ if ( 𝑛 ≤ 𝑀 , 𝑀 , 𝑛 ) ) | |
| 39 | 25 26 38 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐶 [,) +∞ ) ) ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → 𝑛 ≤ if ( 𝑛 ≤ 𝑀 , 𝑀 , 𝑛 ) ) |
| 40 | letr | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝑛 ∈ ℝ ∧ if ( 𝑛 ≤ 𝑀 , 𝑀 , 𝑛 ) ∈ ℝ ) → ( ( 𝐵 ≤ 𝑛 ∧ 𝑛 ≤ if ( 𝑛 ≤ 𝑀 , 𝑀 , 𝑛 ) ) → 𝐵 ≤ if ( 𝑛 ≤ 𝑀 , 𝑀 , 𝑛 ) ) ) | |
| 41 | 29 25 32 40 | syl3anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐶 [,) +∞ ) ) ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐵 ≤ 𝑛 ∧ 𝑛 ≤ if ( 𝑛 ≤ 𝑀 , 𝑀 , 𝑛 ) ) → 𝐵 ≤ if ( 𝑛 ≤ 𝑀 , 𝑀 , 𝑛 ) ) ) |
| 42 | 39 41 | mpan2d | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐶 [,) +∞ ) ) ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 ≤ 𝑛 → 𝐵 ≤ if ( 𝑛 ≤ 𝑀 , 𝑀 , 𝑛 ) ) ) |
| 43 | 37 42 | jad | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐶 [,) +∞ ) ) ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑛 ) → 𝐵 ≤ if ( 𝑛 ≤ 𝑀 , 𝑀 , 𝑛 ) ) ) |
| 44 | 43 | ralimdva | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐶 [,) +∞ ) ) ∧ 𝑛 ∈ ℝ ) → ( ∀ 𝑥 ∈ 𝐴 ( 𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑛 ) → ∀ 𝑥 ∈ 𝐴 𝐵 ≤ if ( 𝑛 ≤ 𝑀 , 𝑀 , 𝑛 ) ) ) |
| 45 | 44 | impr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐶 [,) +∞ ) ) ∧ ( 𝑛 ∈ ℝ ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑛 ) ) ) → ∀ 𝑥 ∈ 𝐴 𝐵 ≤ if ( 𝑛 ≤ 𝑀 , 𝑀 , 𝑛 ) ) |
| 46 | brralrspcev | ⊢ ( ( if ( 𝑛 ≤ 𝑀 , 𝑀 , 𝑛 ) ∈ ℝ ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ if ( 𝑛 ≤ 𝑀 , 𝑀 , 𝑛 ) ) → ∃ 𝑚 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑚 ) | |
| 47 | 15 45 46 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐶 [,) +∞ ) ) ∧ ( 𝑛 ∈ ℝ ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑛 ) ) ) → ∃ 𝑚 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑚 ) |
| 48 | 47 | expr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐶 [,) +∞ ) ) ∧ 𝑛 ∈ ℝ ) → ( ∀ 𝑥 ∈ 𝐴 ( 𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑛 ) → ∃ 𝑚 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑚 ) ) |
| 49 | 48 | rexlimdva | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐶 [,) +∞ ) ) → ( ∃ 𝑛 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑛 ) → ∃ 𝑚 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑚 ) ) |
| 50 | 49 | rexlimdva | ⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ( 𝐶 [,) +∞ ) ∃ 𝑛 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑛 ) → ∃ 𝑚 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑚 ) ) |
| 51 | 8 50 | mpd | ⊢ ( 𝜑 → ∃ 𝑚 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑚 ) |