This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elementhood in the set of eventually upper bounded functions. (Contributed by Mario Carneiro, 26-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ello1mpt.1 | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) | |
| ello1mpt.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) | ||
| ello1d.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) | ||
| Assertion | ello1mpt2 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ≤𝑂(1) ↔ ∃ 𝑦 ∈ ( 𝐶 [,) +∞ ) ∃ 𝑚 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ello1mpt.1 | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) | |
| 2 | ello1mpt.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) | |
| 3 | ello1d.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) | |
| 4 | 1 2 | ello1mpt | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ≤𝑂(1) ↔ ∃ 𝑦 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚 ) ) ) |
| 5 | rexico | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐶 ∈ ℝ ) → ( ∃ 𝑦 ∈ ( 𝐶 [,) +∞ ) ∀ 𝑥 ∈ 𝐴 ( 𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚 ) ↔ ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚 ) ) ) | |
| 6 | 1 3 5 | syl2anc | ⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ( 𝐶 [,) +∞ ) ∀ 𝑥 ∈ 𝐴 ( 𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚 ) ↔ ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚 ) ) ) |
| 7 | 6 | rexbidv | ⊢ ( 𝜑 → ( ∃ 𝑚 ∈ ℝ ∃ 𝑦 ∈ ( 𝐶 [,) +∞ ) ∀ 𝑥 ∈ 𝐴 ( 𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚 ) ↔ ∃ 𝑚 ∈ ℝ ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚 ) ) ) |
| 8 | rexcom | ⊢ ( ∃ 𝑦 ∈ ( 𝐶 [,) +∞ ) ∃ 𝑚 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚 ) ↔ ∃ 𝑚 ∈ ℝ ∃ 𝑦 ∈ ( 𝐶 [,) +∞ ) ∀ 𝑥 ∈ 𝐴 ( 𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚 ) ) | |
| 9 | rexcom | ⊢ ( ∃ 𝑦 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚 ) ↔ ∃ 𝑚 ∈ ℝ ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚 ) ) | |
| 10 | 7 8 9 | 3bitr4g | ⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ( 𝐶 [,) +∞ ) ∃ 𝑚 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚 ) ↔ ∃ 𝑦 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚 ) ) ) |
| 11 | 4 10 | bitr4d | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ≤𝑂(1) ↔ ∃ 𝑦 ∈ ( 𝐶 [,) +∞ ) ∃ 𝑚 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚 ) ) ) |