This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Refine o1bdd2 to give a strictly positive upper bound. (Contributed by Mario Carneiro, 25-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lo1bdd2.1 | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) | |
| lo1bdd2.2 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) | ||
| lo1bdd2.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) | ||
| lo1bdd2.4 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ≤𝑂(1) ) | ||
| lo1bdd2.5 | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ 𝐶 ≤ 𝑦 ) ) → 𝑀 ∈ ℝ ) | ||
| lo1bdd2.6 | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ ( ( 𝑦 ∈ ℝ ∧ 𝐶 ≤ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) → 𝐵 ≤ 𝑀 ) | ||
| Assertion | lo1bddrp | ⊢ ( 𝜑 → ∃ 𝑚 ∈ ℝ+ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑚 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lo1bdd2.1 | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) | |
| 2 | lo1bdd2.2 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) | |
| 3 | lo1bdd2.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) | |
| 4 | lo1bdd2.4 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ≤𝑂(1) ) | |
| 5 | lo1bdd2.5 | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ 𝐶 ≤ 𝑦 ) ) → 𝑀 ∈ ℝ ) | |
| 6 | lo1bdd2.6 | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ ( ( 𝑦 ∈ ℝ ∧ 𝐶 ≤ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) → 𝐵 ≤ 𝑀 ) | |
| 7 | 1 2 3 4 5 6 | lo1bdd2 | ⊢ ( 𝜑 → ∃ 𝑛 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑛 ) |
| 8 | simpr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℝ ) → 𝑛 ∈ ℝ ) | |
| 9 | 8 | recnd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℝ ) → 𝑛 ∈ ℂ ) |
| 10 | 9 | abscld | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℝ ) → ( abs ‘ 𝑛 ) ∈ ℝ ) |
| 11 | 9 | absge0d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℝ ) → 0 ≤ ( abs ‘ 𝑛 ) ) |
| 12 | 10 11 | ge0p1rpd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℝ ) → ( ( abs ‘ 𝑛 ) + 1 ) ∈ ℝ+ ) |
| 13 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → 𝑛 ∈ ℝ ) | |
| 14 | 10 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( abs ‘ 𝑛 ) ∈ ℝ ) |
| 15 | peano2re | ⊢ ( ( abs ‘ 𝑛 ) ∈ ℝ → ( ( abs ‘ 𝑛 ) + 1 ) ∈ ℝ ) | |
| 16 | 14 15 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( abs ‘ 𝑛 ) + 1 ) ∈ ℝ ) |
| 17 | 13 | leabsd | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → 𝑛 ≤ ( abs ‘ 𝑛 ) ) |
| 18 | 14 | lep1d | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( abs ‘ 𝑛 ) ≤ ( ( abs ‘ 𝑛 ) + 1 ) ) |
| 19 | 13 14 16 17 18 | letrd | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → 𝑛 ≤ ( ( abs ‘ 𝑛 ) + 1 ) ) |
| 20 | 3 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
| 21 | letr | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝑛 ∈ ℝ ∧ ( ( abs ‘ 𝑛 ) + 1 ) ∈ ℝ ) → ( ( 𝐵 ≤ 𝑛 ∧ 𝑛 ≤ ( ( abs ‘ 𝑛 ) + 1 ) ) → 𝐵 ≤ ( ( abs ‘ 𝑛 ) + 1 ) ) ) | |
| 22 | 20 13 16 21 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐵 ≤ 𝑛 ∧ 𝑛 ≤ ( ( abs ‘ 𝑛 ) + 1 ) ) → 𝐵 ≤ ( ( abs ‘ 𝑛 ) + 1 ) ) ) |
| 23 | 19 22 | mpan2d | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 ≤ 𝑛 → 𝐵 ≤ ( ( abs ‘ 𝑛 ) + 1 ) ) ) |
| 24 | 23 | ralimdva | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℝ ) → ( ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑛 → ∀ 𝑥 ∈ 𝐴 𝐵 ≤ ( ( abs ‘ 𝑛 ) + 1 ) ) ) |
| 25 | brralrspcev | ⊢ ( ( ( ( abs ‘ 𝑛 ) + 1 ) ∈ ℝ+ ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ ( ( abs ‘ 𝑛 ) + 1 ) ) → ∃ 𝑚 ∈ ℝ+ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑚 ) | |
| 26 | 12 24 25 | syl6an | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℝ ) → ( ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑛 → ∃ 𝑚 ∈ ℝ+ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑚 ) ) |
| 27 | 26 | rexlimdva | ⊢ ( 𝜑 → ( ∃ 𝑛 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑛 → ∃ 𝑚 ∈ ℝ+ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑚 ) ) |
| 28 | 7 27 | mpd | ⊢ ( 𝜑 → ∃ 𝑚 ∈ ℝ+ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑚 ) |